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Dr. Thomas Erlebach, University of Leicester, co-examiner
Dr. Riko Jacob, ETH Zürich, co-examiner
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Abstract

The focus of this thesis is on algorithmic questions that aredirectly linked to
practical problems from diverse applications like manufacturing, train schedul-
ing or telecommunications. We present four problem settings together with com-
binatorial problems (or mathematical models) that are at the core of the practical
applications. From this we derive both interesting theoretical and relevant prac-
tical results, which we back up by experiments. In detail, the topics of this thesis
are as follows.

Sequential Vector Packing We study a novel variant of the well knownd-di-
mensional bin (or vector) packing problem that is motivatedby an appli-
cation from the manufacturing industry. Given a sequence ofnon-negative
d-dimensional vectors, the goal is to pack these into as few bins as possi-
ble. In the classical problem the bin size vector is given andthe sequence
can be partitioned arbitrarily. We study a variation where the vectors have
to be packed in the order in which they arrive. The bin size vector can be
chosen once in the beginning, under the constraint that the coordinate-wise
bounds sum up to at most a given total bin size. We give both theoretical
results and practical algorithms that we test on the original data.

Optimization of a Freight Train System We consider the optimization of a
Swiss freight train service that is operated as a (multi-) hub spoke system.
This can be seen as a more complicated version of classical vehicle routing
problems. We derive several mathematical models, considersome theoret-
ical questions linked to the operations at the hub, and test our models on
the real-world instance. For the mathematical models we uselinear pro-
gramming based optimization techniques like branch and cutand column
generation.

OVSF Code AssignmentOrthogonal Variable Spreading Factor (OVSF-) codes
are used in UMTS to share the radio spectrum among several connections
of possibly different bandwidth requirements. The combinatorial core of
the OVSF code assignment problem is to assign some nodes of a complete
binary tree of heighth (the code tree) ton simultaneous connections, such
that no two assigned nodes (codes) are on the same root-to-leaf path. A
connection that uses a2−d fraction of the total bandwidth requires some
code at depthd in the tree, but this code assignment is allowed to change
over time. We consider the one-step code assignment problem: Given an
assignment, move the minimum number of codes to serve a new request.
Minn and Siu propose the so-called DCA-algorithm to solve the problem
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optimally. In contrast, we show that DCA does not always return an opti-
mal solution, and that the problem is NP-hard. We present results on exact,
approximation, online, and fixed parameter tractable algorithms.

Joint Base Station SchedulingConsider a scenario where base stations need to
send data to users with wireless devices. Time is discrete and slotted into
synchronous rounds. Transmitting a data item from a base station to a
user takes one round. A user can receive the data item from anyof the
base stations. The positions of the base stations and users are modeled
as points in the Euclidean plane. If base stationb transmits to useru in
a certain round, no other user within distance at most‖b − u‖2 from b
can receive data in the same round due to interference phenomena. The
goal is to minimize, given the positions of the base stationsand users, the
number of rounds until all users have their data. We call thisproblem the
Joint Base Station Scheduling Problem (JBS) and consider iton the line
(1D-JBS) and in the plane (2D-JBS). We study the complexity of 2D-JBS
and approximation algorithms for both variants. Moreover,we analyze
a special graph class ofarrow graphsthat arises in the one-dimensional
setting.
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Zusammenfassung

Im Mittelpunkt dieser Arbeit stehen algorithmische Fragen, die durch praktische
Probleme aus verschiedenen Gebieten wie Fertigung, Zug-Optimierung oder Te-
lekommunikation motiviert sind. Wir stellen vier Anwendungen vor und dazu je-
weils ein kombinatorisches Problem (oder ein mathematisches Modell), das den
Kern dieser Anwendung ausmacht. Daraus entwickeln wir sowohl theoretisch in-
teressante als auch praktisch relevante Resultate, die wirnoch durch Experimente
untermauern. Im Detail betrachten wir die folgenden Themen.

Sequentielles Vector PackingWir untersuchen eine neuartige Variante des be-
kanntend-dimensionalen Bin (oder auch Vector) Packing Problems, wel-
che durch eine Anwendung aus der Fertigung motiviert ist. Gegeben sei
eine Sequenz von nicht-negativend-dimensionalen Vektoren. Die Aufga-
be besteht darin, diese in so wenig Bins (,,Kisten”) wie möglich zu packen.
Beim klassischen Bin Packing ist der Bin-Grössenvektor gegeben und die
Sequenz kann beliebig angeordnet werden. Wir untersuchen eine Variati-
on, bei der die Vektoren in der durch die Sequenz gegebenen Reihenfolge
in die Bins gepackt werden müssen. Die Bin-Grösse kann anfangs gewählt
werden, mit der Einschränkung, dass ihre koordinatenweise Summe ei-
ne vorgegebene Grösse nicht überschreiten darf. Wir präsentieren sowohl
theoretische Resultate als auch praktische Algorithmen, die wir auf den
realen Daten testen.

Optimierung eines FrachtbahnsystemsWir betrachten die Optimierung eines
Schweizer Frachtbahnsystems, das als (Multi-) Nabe-Speiche System ope-
riert. Das Problem kann als kompliziertere Variante klassischer Vehicle
Routing Probleme gesehen werden. Wir entwickeln eine Sequenz von ma-
thematischen Modellen für das Problem, betrachten einigetheoretische
Fragestellungen bezüglich des Ablaufs an der Nabe und testen unsere Mo-
delle auf der realen Instanz. Für die mathematischen Modelle benutzen
wir Optimierungstechniken, die auf linearer Programmierung beruhen wie
branch and cut oder column generation.

OVSF Code ZuweisungOrthogonal Variable Spreading Factor (OVSF-) Codes
werden in UMTS Netzwerken benutzt, um es den verschiedenen Benut-
zern innerhalb einer Funkzelle (mit potentiell verschiedenen Bandbreiten-
anforderungen) zu ermöglichen, gleichzeitig auf die vorhandene Bandbrei-
te zuzugreifen. Der kombinatorische Kern des OVSF Code-Zuweisungs-
problems besteht darin, Knoten eines vollständigen binären Baumes (der
Code-Baum) der Höheh einer Menge vonn aktiven Verbindungen zu-
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zuweisen, so dass keine zwei zugewiesenen Knoten (Codes) auf dem sel-
ben Wurzel-Blatt Pfad sind. Eine Verbindung, die einen Anteil von 2−d

an der gesamten Bandbreite benötigt, muss einen Code der Tiefe d im
Code-Baum zugewiesen bekommen. Diese Zuweisung ist nicht fix, son-
dern kann sich mit der Zeit ändern. Wir betrachten das Ein-Schritt Code-
Zuweisungsproblem: Gegeben eine Code-Zuweisung, bewege die minima-
le Anzahl von Codes, um eine neue Anfrage zu bedienen. Minn und Siu
haben den so genannten DCA-Algorithmus vorgestellt, um dasProblem
optimal zu lösen. Demgegenüber zeigen wir, dass DCA nichtimmer die
optimale Lösung liefert und dass das Problem NP-hart ist. Wir geben Re-
sultate zu exakten, approximations-, online- und fixed-parameter Algorith-
men.

koordiniertes Funkmast Scheduling Wir betrachten ein Szenario, in dem
Funkmasten Daten an Benutzer mit Mobilgeräten senden. In unserem Mo-
dell betrachten wir die Zeit als diskretisiert und in Rundensegmentiert.
Die Übertragung eines Datenpakets von einem Funkmasten zu einem Be-
nutzer benötigt eine Runde. Ein Benutzer kann Daten von jedem Funkma-
sten empfangen. Die Positionen der Funkmasten und Benutzerwerden als
Punkte in der Euklidischen Ebene betrachtet. Wenn in einer Runde Funk-
mastb an Benutzeru sendet, kann kein anderer Benutzer innerhalb einer
Distanz von‖b − u‖2 von b ein Datenpaket empfangen, weil das Senden
an u zu Interferenz in diesem Bereich führt. Das Ziel besteht darin, für
eine gegebene Konfiguration von Benutzern und Funkmasten das Senden
von Daten so zu koordinieren, dass eine minimale Anzahl von Runden
benötigt wird, um alle Benutzer zu bedienen. Wir nennen dieses Problem
koordiniertes Funkmast Scheduling (JBS) und betrachten esauf einer Ge-
raden (1D-JBS) und in der Ebene (2D-JBS). Wir untersuchen die Komple-
xität von 2D-JBS sowie Approximationsalgorithmen für beide Varianten.
Darüber hinaus analysieren wir die Graphklasse derarrow graphs, die sich
als Konfliktgraph in der eindimensionalen Variante ergibt.
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Chapter 1

Introduction

The cocktail party problem Have you ever tried to explain to the “average guy
on the street” what a theoretical computer scientist actually does? Then maybe
this cocktail party conversation sounds familiar to you.

Alice: “So what exactly is it that you do as a theoretical computer scientist?”

Bob: “We explore the limits of computability, what you can compute and
what you can’t. At the same time we try to invent efficient solution methods for
fundamental problems.”

Alice: “What is a fundamental problem?”

Bob: “For example sorting a sequence of numbers, finding a good packing of
objects into a bin, or finding a cheap tour through a network.”

Alice: “Aha.”

I have made the experience that the significance of abstract fundamental al-
gorithmic problems is hard to grasp for most non-computer scientists, even if
these problems occur in many places in various disguises. Also personally, I find
it often more motivating to directly start with a practical problem, to try to solve
it with the algorithmic tool kit and on the way formulate and hopefully solve the
underlying “fundamental” problem. It is this approach thatI try to adopt in this
thesis.

We will encounter four such practical problems and algorithmic questions
that are motivated by these problems. An ideal goal would be to develop for
each given problem both interesting and new algorithmic theory and a practical
solution that uses this new theory and completely solves thepractical problem.
However, it is not a secret that different problems lend themselves more or less

1
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well to practical or theoretical advances. There is often some trade-off between
the desired high level of detail of a practical model versus the maximum level of
detail for which we can prove theorems in a theoretical setting. For this reason,
varying emphasis will be given to the practical and theoretical aspects of the
different problems.

It is also true that different algorithmic problems necessitate different algo-
rithmic techniques, be it because the theoretical core of the problem lends itself
well to the application of a particular technique or becausethe application de-
mands a certain type of result that can only be delivered by some techniques. For
that reason, we will see in this thesis a tour d’horizon of state-of-the-art algo-
rithm design and analysis techniques, which are applied to real-world problems:
Approximation algorithms, online algorithms, linear programming based opti-
mization and a few results on fixed-parameter tractability.

In the following we give a short overview of the four problemsthat are studied
in this thesis.

Sequential vector packing This problem seems to be one of the few excep-
tions to the above rule about the trade-off between theory and practice. An in-
dustry partner described a setting to us that led to a clean combinatorial problem
from the start. As a small letdown, we are not allowed to describe the underlying
application but we give a similar application in Chapter 3 and give an alternative
motivation here: Assume you want to spray a long text on a wallusing stencils
for the letters and spray color. You start from the left and assemble as much of
the beginning of the text as you have matching stencils at your disposal. Then
you mask the area around the stencils and start spraying. Afterwards, you re-
move the stencils again. In the next steps you iterate this procedure starting from
the last letter that was sprayed until the whole text is finished. The sequential
vector packing problem can be formulated as the following question: Assume
you have bought enough material to cut out a fixed numberB of stencils before
you start. How many stencils of each letter do you cut out in order to minimize
the steps that you need to spray the whole text? We deal with this question in
Chapter 3, where we formulate it as a novel vector packing problem. We give
an NP-hardness proof and develop a (bicriteria) approximation algorithm that
is based on LP-rounding and some structural insights, and propose and analyze
some practical heuristics for the problem. Finally, we present experiments on
real-world data that substantiate that our approaches significantly improve over
the previous attempts to produce solutions to the problem.
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Optimizing a freight railway system Railway systems pose a multitude of
interesting optimization problems. We consider a freight train service that is op-
erated as a (multi-) hub and spoke system. For that system we want to find good
routes for the trains to go to and from the hubs and also a good schedule for these
trains. The routes and the schedule are subject to various practical constraints
that make the minimization of the overall cost of a solution achallenging task.
We present a sequence of models with which we tackled the problem and some
preliminary experimental results with real world data. We mainly use LP-based
optimization techniques like branch-and-cut and column generation. The foun-
dations of these techniques are presented in a separate chapter. The emphasis in
this chapter is on the modeling aspect, which sets it off fromthe other chapters,
where the model is usually both simple and well-defined from the start. For the
implementation of our algorithms we use state-of-the-art libraries. In particu-
lar, we are the first to use the SCIP library [3] for a column generation approach.
Apart from the more practical results, we also analyze some aspects of the under-
lying scheduling and shunting problems from a more theoretical point of view. It
turns out that one of these “fundamental problems” in algorithmics, the min-cut
linear arrangement problem, occurs at the core of the scheduling problem at the
shunting yards.

OVSF-code assignment In telecommunications, there are several technologies
that allow different users in one cell of a radio network to share the common
bandwidth. In UMTS the so called Wideband Code Division Multiple Access
(WCDMA) method is used, which assigns different orthogonalspreading (chan-
nelization) codes to the users in one cell. One type of such codes are Orthogonal
Variable Spreading Factor codes (OVSF) that can be thought of as being derived
from a binary code tree, where each node of the tree corresponds to a code.
Users request different bandwidths which correspond to different levels in the
code tree. In order for the orthogonality property to hold, there can be at most
one assigned code on each path from the root of the tree to eachof its leaves.
In a dynamic setting where users arrive and depart, thus request and return such
codes, the code tree can get fragmented. It can then happen that an additional
request cannot be served because the currently active codesblock all root-to-leaf
paths on the requested level, even though there is enough bandwidth available.
In such a situation, the active users get assigned new codes,i.e., the assigned
codes in the tree are changed, such that the additional request can be served.
This induces a communication overhead for each changed code. Therefore, it
is an interesting question, how one can minimize the number of necessary reas-
signments. One algorithmic question here is how one can minimize the number
of necessary code changes for a given assignment. Minn and Siu propose the
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Round 1 Round 2

Scenario A

Scenario B

Figure 1.0.1: Two scenarios for coordination of transmission between base sta-
tions. In Scenario A an interference problem arises in the second round (red
box). In Scenario B the four users can be served in two rounds (currently served
users depicted as green boxes).

so-called DCA-algorithm to solve the problem optimally [93]. In contrast, we
show that DCA does not always return an optimal solution, andthat the prob-
lem is NP-hard. We also tackle the problem from other angles.We investigate
approximation algorithms, and also consider the very natural online setting.

Joint base station scheduling A second technology to share the common band-
width between users in one cell of a telecommunications network is Time Divi-
sion Multiple Access (TDMA), in which time is slotted into synchronous rounds
and each user is assigned a slot. We consider some theoretical problems that are
motivated by an idea of Das, Viswanathan and Rittenhouse [43], who propose
to coordinate the assignment of users to base stations to increase throughput and
minimize interference. The coordination makes sense because of the power con-
trol mechanism of the base stations. Roughly speaking, the base stations adapt
their signal-strength to the distance to the user that is served in the current time
slot. The signal strength of a base station represents background noise for the
other base stations and can lead to interference problems. For this reason, coor-
dination can make sense: Consider the very simple setting inFigure 1.0.1, which
also illustrates our basic model. Two base stations (crosses) are to serve four
users (boxes) with unit demand. Base stations and users are modeled as points
in the Euclidean plane. Our model of signal strength and interference are signal
and interference disks. This means that in Scenario A the twobase stations first
serve the close by users without causing any interference. In the second time
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slot they try to serve the far away users, but this causes problems, because the
left user is covered by two disks which leads to interference. In our model this
means that the user cannot receive the signal. In Scenario B this does not happen.
The base stations schedule the transmissions in such a way that no interference
is caused. Observe that even if the interference disks intersect in the first step in
B this causes no problem because no user that is currently served is contained in
the interference region. Starting from this basic model, weinvestigate some algo-
rithmic problems defined on such interference disks in one and two dimensions.
We relate the one-dimensional problem to a coloring problemin a special graph
class which we callarrow graphs, analyze some special cases, and also consider
the complexity of the two-dimensional problem. We give simple approximation
algorithms for both the one- and the two-dimensional problem.

Outline of the thesis and research contributions In this thesis the above four
problems will be considered. In a final chapter the main results of the thesis are
summarized. Some of the material covered has also been published in conference
proceedings or in journals, see [51, 53, 63]. Chapter 3 is based on unpublished
material and Chapter 5 extends the preliminary results presented in [63]. All of
this work was done in collaboration with different co-authors. For this reason,
the topics presented here will also partly be subject of other theses. For better
readability, I will cover the complete results for each topic but refer to a thesis
of a co-author for some of the proofs. In general, I will explicitly point out
if the topic of a chapter is also covered in another thesis andexplain my main
contribution.
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Chapter 2

Preliminaries

In this chapter we briefly review some basic definitions and notation that are
used throughout this thesis. With the exception of LP-basedoptimization tech-
niques, which are introduced separately in Chapter 4, we assume that the reader
is familiar with the basic concepts from complexity theory,algorithm design and
combinatorial optimization. There are numerous textbookson these subjects, see
for example [11, 80, 38, 35].

Graphs A graphG = (V,E) is a pair of anode setV and anedge setE. For
undirectedgraphs each edgee ∈ E is a two element subset ofV , containing the
endpointsof e. Fordirectedgraphs, each edgee ∈ E is a pair(u, v), u ∈ V, v ∈
V, u 6= v, of tail andheadof e, so that in particular(u, v) 6= (v, u). A walk in a
graph is an alternating listv0, e1, v1, . . . , ek, vk of nodes and edges such that for
1 ≤ i ≤ k edgeei has endpointsvi−1 andvi. A trail is a walk with no repeated
edge. Apath is a walk with no repeated node. In the literature the definition of
paths is a bit ambiguous. Other authors take the definition ofwalks or trails for
paths and call the paths as they are defined heresimpleor alsoelementary. In
places where we want to emphasize that a path is indeed elementary, we will also
use this term. Au, v-pathis a path starting at nodeu and ending atv. For further
standard graph-theoretic terminology, see the book by West[132].

Basic complexity theory There are many equivalent ways to define the basic
concepts of complexity theory. Probably the most standard way is via nondeter-
ministic Turing machines, see [62]. We give a very short introduction based on
the certificate view on NP, following loosely [131].

7
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An alphabetΣ is a finite set of symbols,Σ∗ denotes the set of all finite strings
(or words) of symbols inΣ. A languageis a (possibly infinite) subset ofΣ∗. An
algorithmas we view it here maps everyw ∈ Σ∗ to YES or NO, i.e., itaccepts
or rejectsw. Deciding whether a givenw is contained in a languageL is called a
decision problem.

The class P (of polynomially recognizable languages) is theset of all lan-
guagesL over {0, 1}, such that there is a polynomial time algorithmA with
L = {w | A acceptsw}. Polynomial timemeans that there is a polynomialpA

such thatA terminates on any input in at mostpA(|w|) steps.

A verifier for a languageL is an algorithmV such thatL = {w | ∃c ∈
{0, 1}∗ : V accepts(w, c)}. If V accepts(w, c) the stringc is called acertificate
for membership ofw in L. The class NP is the class of all languages for which
there is a verifier with a polynomial running time in the lengths of the words in
L.

Defining languages on the alphabet{0, 1} is not a real restriction. A typical
instance of a combinatorial problem consists of various parameters and data items
(like a graph), which can all be encoded as bitstrings on the alphabet{0, 1}.

A languageL1 is polynomial time reducibleto languageL2, in symbols
L1 ≤P L2, if there is a polynomial time computable functionf : {0, 1}∗ →
{0, 1}∗ such thatw ∈ L1 if and only if f(w) ∈ L2. In short, we also sayL1 can
be reduced toL2.

A decision problemL is NP-hardif for all L′ ∈ NP the decision problemL′

can be reduced toL; if additionallyL ∈ NP, thenL is NP-complete.

A famous theorem by Cook states that the satisfiability problem for Boolean
formulas is NP-complete [34]. The NP-hardness of a problem makes the exis-
tence of efficient, i.e., polynomial time algorithms for it highly unlikely: Under
the largely believed hypothesis ofP 6= NP it holds that no polynomial time
algorithm for an NP-hard problem can exist. Strictly speaking, we make the
implicit assumption here that Turing machines and modern computers are equiv-
alent with respect to polynomial time computations. This assumption is the fa-
mousextended Church-Turing Thesis. For a more thorough introduction to the
theory of NP-completeness, see the book by Garey and Johnson[62].

Approximation and online algorithms In a typical application one is not so
much interested in a decision problem but rather in anoptimization problem, the
goal of which is to minimize or maximize the value of an objective function
that is defined on the feasible solutions of the problem. Alsofor optimization
problems the notion of NP-hardness can be defined. It sufficesto define the
decision problemΠd associated with an optimization problemΠ. Typically, one
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takes the question whether there are instances with an objective value better than
a valuek (given in the input) as this decision problem. The NP-hardness of
an optimization problem is then equivalent to the NP-hardness of the associated
decision problem, see [11] for a more formal definition.

For such NP-hard optimization problems the existence of efficient, i.e., poly-
nomial exact algorithms is again ruled out under the assumption of P 6= NP.
For this reason, researchers have developedapproximation algorithmsthat do
not necessarily find the optimum solution to an optimizationproblem but one for
which the solution is in all cases provably only off by some factor ρ. LetA be
a polynomial time algorithm and denote byA(I) the objective value returned by
A on instanceI, further denote by OPT(I) the value of the optimum solution on
I. We say thatA is aρ-approximation algorithmif there exists a constantk such
that for all instancesI it holds that

A(I) ≤ ρ ·OPT(I) + k for a minimization problem

and
OPT(I) ≤ ρ · A(I) + k for a maximization problem.

The valueρ is called theapproximation ratio1 of the algorithm, it is always
greater or equal to 1. Just as NP-hardness results rule out the existence of poly-
nomial time exact algorithms, it is possible to showinapproximability resultsthat
rule out approximation algorithms with approximation ratios better than a given
value or function.

In real-world applications it is often the case that the complete input is not
available at the time when an algorithm is called. Data arrive over time in an input
sequence and the algorithm might have to react online. An algorithmAon that
operates in such a setting is called anonline algorithm. An established method
to evaluate the performance ofAon is similar to the analysis of approximation
algorithms. The objective function value of the solution thatAon generates at the
end of the input sequenceI is compared to the optimal objective function value
OPT (I). We say thatAon is ρ-competitiveif there exists a constantk such that
for each instanceI

Aon(I) ≤ ρ ·OPT(I) + k for a minimization problem

and
OPT(I) ≤ ρ · Aon(I) + k for a maximization problem.

1The above definition is again a bit ambiguous in the literature. Other authors take the definition
for minimization problems also for maximization problems.It is also common to leave out the
constantk and to call the approximation ratio as defined aboveasymptotic approximation ratio.
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The valueρ is called thecompetitive ratio. It is common to think of the input
sequence as a sequence being generated by a (malicious)adversary.

Sometimes it is hard to achieve satisfactory approximationratios or competi-
tive ratios. In this case it can make sense to compare the algorithm to an optimal
algorithm that works on a more constrained input, or, equivalently to allow the
algorithm to use more resources than the optimal algorithm.Historically, such
algorithms are calledbicriteria approximation algorithmsfor the approximation
ratio andresource augmented algorithmsin the online setting, which is also the
terminology used in this thesis. In the literature the usageis not clear-cut, how-
ever.

Definition 2.1 (Bicriteria Approximation, Resource Augmentation) Given a
minimization problem with instancesI(r) that comprise as one input parameter
r the available amount of some resource. An algorithmA is a bicriteria(α, β)-
approximation algorithmif a constantk exists such that it finds for each instance
I(β ·r) a solution of value not more thanα times the optimal objective value plus
k for I(r), i.e.,

A(I(βr)) ≤ α ·OPT(I(r)) + k . (2.0.1)

The definition for maximization problems and online problems is analogous.
In the online setting a bicriteria(α, β)-competitive algorithm is typically called
α-competitive with resource augmentation by a factor ofβ.

Recently, a different relaxation to the definition of what one might understand
by an “efficient” algorithm has attracted considerable attention. There are cases
in which a (typically NP-complete) problem can be parameterized by a parameter
k such that for smallk there are efficient algorithms in the following sense.

Definition 2.2 (Fixed Parameter Tractable) An algorithmA is fixed parame-
ter tractable(FPT) with respect to parameterk if its running time is bounded
byf(k) · nO(1) for an arbitrary functionf .

In a typical fixed-parameter tractable algorithm,f is something like2k or 22k

.
Intuitively, for such an algorithm the exponential behavior of the running time
has been reduced to the parameter.

For a more thorough coverage of approximation algorithms, see for example
the books by Ausiello et al. [11]. For more information on thetechniques used
to construct approximation algorithms, see the book by Vazirani [128] or the one
edited by Hochbaum [73]. The books by Papadimitriou [100] orWegener [130]
give a broader overview over complexity theory. For textbooks on online algo-
rithms, see the books by Borodin and El-Yaniv [18], Fiat and Woeginger [59]
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or the lecture notes by Albers [7]. Bicriteria approximation algorithms were
originally introduced for scheduling problems [76, 101]. Later, the analogous re-
source augmentation was presented as an online analysis technique by Kalyana-
sundaram and Pruhs in [77]. See the books by Niedermeier [98]or Downey
and Fellows [47] for a thorough introduction to the concept of fixed parameter
tractability.
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Chapter 3

Sequential Vector Packing

Tyrell: [explains to Roy why he can’t extend his lifespan]
“The facts of life...
to make an alteration in the evolvement of an organic life system is fatal.
A coding sequence cannot be revised once it’s been established.”
(from Blade Runner)

3.1 Introduction

Needless to say, many variations of bin packing have attracted a huge amount of
scientific interest over the past decades, partly due to their relevance in diverse
scheduling applications. The variation which we investigate in this chapter arises
from a specificresource constrained schedulingproblem: A sequence of jobs
is given and must be processed in this order. Each job needs certain amounts
of various types of resources (for instance 1 unit of resource A, 2 units of re-
source B, 0 units of all others). Several jobs can be processed in one batch if the
resources they consume altogether are bounded by a predefined bound. Specif-
ically, for each individual type of resource we have a reservoir containing some
amount of the resource and none of these amounts may be exceeded during one
batch. Within a given bound on the total amount of available resources one has
the freedom to choose how these individual amounts are distributed once and
for all (e.g., 10 units in the reservoir of resource A, 23 units in the reservoir of
resource B, . . . ). The aim is to tune these amounts in such a waythat the jobs
are processed in as few batches as possible. To motivate thisscenario we now
describe a specific scheduling problem which is a variation of a setting presented
by Müller-Hannemann and Weihe [95]. The setting in [95] arose as a subproblem

13
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in a cooperation with Philips/Assembléon B.V., Eindhoven, the Netherlands.

The task is to optimize an assembly line that consists of a conveyor belt on
which different work pieces arrive in the work area, and of a set of robot arms
that can process these work pieces. The robot arms can perform different tasks
depending on the resources (for example tools) they load in asetup phase before
each step from a resource reservoir (a toolbox). There ared different such re-
sources. The work pieces require different processing, i.e., robot arms equipped
with a specific amount of each resource. The sequenceS in which the work
pieces arrive on the assembly line is fixed and cannot be altered, it can be thought
of as a stack. This is the crucial difference compared to standard bin packing or
scheduling scenarios, where it is assumed that reordering is possible.

The resource reservoir has a total size ofB and contains an amountbj of
each resourcej, j ∈ {1, . . . , d}, such that

∑d
j=1 bj = B. Each production cycle

consists of a setup phase in which the robots load the necessary resources, so that
in a second phase as many work pieces as possible can be moved into the work
area (i.e., “popped from the stack”) and processed. For a setof work pieces to be
processed all the necessary resources must have been loadedin the setup phase.
The optimization task is to choose the valuesbj, j ∈ {1, . . . , d} once and for
all such that the total number of cycles needed to process thewhole sequence is
minimized. This is not an on-line problem, since the sequence of work pieces
arriving on the conveyor belt is known in the beginning.

3.1.1 Model and Notation

We now give a formal definition of the problem. The jobs or workpieces corre-
spond to a sequence of vectors, i.e., the demand for resourcei is specified in the
ith component of such a vector. Similarly, the available resources correspond to
a bin vector, respectively. To the best of our knowledge thissetting is novel. Due
to its basic character we believe that it may be of interest also in contexts other
than resource constrained scheduling. In some sense the problem can be seen as
inverse vector packing: Instead of reordering a sequence for a given bin vector,
the sequence is fixed and the bin vector needs to be chosen.

Definition 3.1 (Sequential vector packing)
Given: a sequenceS = s1 · · · sn of demand vectorssi = (si1, . . . , sid) ∈ Qd

+,
d ∈ N, and atotal bin sizeB ∈ Q+.

Goal: a bin vector(or short: bin) b = (b1, . . . , bd) ∈ Qd
+ with

∑d
j=1 bj = B

such thats1 · · · sn can be packed in this order into a minimum number of such
binsb. More precisely, the sequence can be packed intok bins, if breakpoints
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0 = π0 < π1 < · · · < πk = n exist, such that

πl+1∑

i=πl+1

si ≤ b for l ∈ {0, . . . , k − 1} ,

where inequalities over vectors are component-wise. We denote thej-th compo-
nent,j ∈ {1, . . . , d}, of the demand vectors and the bin vector asresourcej, i.e.,
sij is the demand for resourcej of thei-th demand vector. We also refer tosi as
positioni.

The sequential unit vector packingproblem is the restricted variant where
si, i ∈ {1, . . . , n}, contains exactly one entry equal to1, all others are zero,
i.e., each work piece needs only one tool. Note that any solution for this version
can be transformed in such a way that the bin vector is integral, i.e.,b ∈ Nd, by
potentially rounding down resource amounts to the closest integer (therefore one
may also restrict the total bin size toB ∈ N). The same holds if all vectors in
the sequence are integral, i.e.,si ∈ Nd, i ∈ {1, . . . , n}. Following Definition 2.1
we call an algorithmA a bicriteria (α, β)-approximation algorithmfor the se-
quential vector packing problem if it finds for each instance(S, β ·B) a solution
which needs no more thanα times the number of bins of an optimal solution
for (S, B). That is, the approximation algorithm may not only approximate the
value of the objective function within a factor ofα, but it may also relax the total
bin size by a factor ofβ.

3.1.2 Related Work

There is an enormous wealth of publications both on the classical bin packing
problem and on variants of it. The two surveys by Coffman, Garey and John-
son [32, 33] give many pointers to the relevant literature until 1997. In [36]
Coppersmith and Raghavan introduce the multidimensional (on-line) bin pack-
ing problem. There are also some variants that take into consideration precedence
relations on the items [134, 129] that remotely resemble oursetting. Still, we are
unaware of any publication that deals with the sequential vector packing problem.

The setting presented in [95] is similar to ours. Different work pieces arrive
in an unalterable sequence on an assembly line and are processed by several ro-
bot arms. The principal goal is the same: to process all work pieces as quickly
as possible. Moving the work pieces forward on the assembly line costs a fixed
amount of time; this corresponds to the time needed for the setup phase. In con-
trast to our setting the processing times for each step can vary though, depend-
ing on which work piece can be accessed by which robot arm. In effect, each
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work piece has a certain number of tasks that need to be done byspecific robot
arms. Another difference to our setting is that the robot arms do not have lim-
ited resources. Müller-Hannemann and Weihe [95] give an NP-hardness proof
for their setting, present several results pertaining to fixed parameter tractability,
and derive a polynomial time approximation scheme. For a survey of general
problems and approaches to the balancing and sequencing of assembly lines see
Scholl [113]. Ayob et al. [12] compare different models and assembly machine
technologies for surface mount placement machines.

3.1.3 Summary of Results

In Section 3.2 we present approximation algorithms for the sequential vector
packing problem. These are motivated by the strong NP-hardness results that we
give in Section 3.3. The approximation algorithms are basedon an LP relaxation
and two different rounding schemes, yielding a bicriteria(1

ε ,
1

1−ε)-approximation
and—as the main result of this chapter—a(1, 2)-approximation. Recall that the
former algorithm, e.g., forε = 1

3 , yields solutions with at most3 times the opti-
mal number of bins while using at most1.5 times the given total bin sizeB, the
latter may use at most the optimal number of bins and at most twice the given
total bin sizeB. In Section 3.4.1 we present two simple greedy strategies and
argue why they perform badly in the worst case. Furthermore,we give an easy
to implement heuristic and present two optimizations concerning subroutines. In
particular, we show how one can “evaluate” a given bin vector—i.e., compute the
numberk of bins needed with this bin vector—in timeO(k ·d) after a preprocess-
ing phase which takesO(n) time. Finally, in Section 3.5 we briefly discuss the
results of experiments with the heuristics and an ILP formulation on real world
data.

3.2 Approximation Algorithms

In this section we present approximation algorithms for thesequential vector
packing problem. These are motivated by the strong NP-hardness results that
we give in Section 3.3.1. We start by presenting an ILP-formulation, which we
subsequently relax to an LP. For ease of exposition we continue by first describ-
ing a simple rounding scheme which yields a bicriteria(1

ε ,
1

1−ε)-approximation
and then show how to modify it in order to obtain a(1, 2)-approximation. For
ε < 1/2 the first rounding scheme yields solutions that violate the given bin size
by less than a factor of two.



www.manaraa.com

3.2. Approximation Algorithms 17

3.2.1 ILP Formulation

For a sequential vector packing instance(S, B), let wu,v :=
∑v

i=u+1 si, for
u, v ∈ {0, . . . , n} andu < v, denote thetotal demand(or total demand vector)
of the subsequenceSu,v := su+1 · · · sv. If wu,v ≤ b holds, we can pack the
subsequenceSu,v into bin b. The following integer linear programming (ILP)
formulation solves the sequential vector packing problem.Let X := {xi | i ∈
{0, . . . , n}} andY := {yu,v | u, v ∈ {0, . . . , n}, u < v} be two sets of0-1
variables, letb ∈ Qd

+.

ILP: minimize
n∑

i=1

xi

s.t. x0 = 1 (3.2.1)
i−1∑

u=0

yu,i =

n∑

v=i+1

yi,v = xi for i ∈ {1, . . . , n− 1} (3.2.2)

∑

u,v:
u<i≤v

wu,v · yu,v ≤ b for i ∈ {1, . . . , n} (3.2.3)

d∑

j=1

bj = B (3.2.4)

b ∈ Qd
+, xi, yu,v ∈ {0, 1} for xi ∈ X, yu,v ∈ Y

The0-1 variablexi indicates whether there is a breakpoint at positioni ≥ 1.
Hence the objective: to minimize the sum over allxi. The 0-1 variableyu,v

can be seen as a flow which is routed on an (imagined) edge from position
u ∈ {0, . . . , n − 1} to positionv ∈ {1, . . . , n}, with u < v, see Figure 3.2.1.
The Constraints (3.2.2) ensure that flow conservation holdsfor the flow repre-
sented by theyu,v variables and thatxi is equal to the inflow (outflow) which
enters (leaves) positioni. Constraint (3.2.1) enforces that only one unit of flow
is sent via theY variables. The path which is taken by this unit of flow di-
rectly corresponds to a series of breakpoints. For instance, if we have consec-
utive breakpoints at positionsu andv, there will be a flow of1 from u to v,
i.e.,xu = yu,v = xv = 1.

In Constraints (3.2.3) the bin vectorb comes into play: for any two consecu-
tive breakpoints (e.g.,xu = xv = 1) the constraint ensures that the bin vector is
large enough for the total demand between the breakpoints (e.g., the total demand
wu,v of the subsequenceSu,v). Note that Constraints (3.2.3) sum over all edges
that span over a positioni (in a sense the cut defined by positioni), enforcing that
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0 1 2 3 4 5 6 7 8 9 10position i

1 1 0 0

π0 = 0 π1 = 3 π2 = 7
π3 = 8

π4 = 10

y0,3 = 1 y3,7 = 1 y7,8 = 1
y8,10 = 1

sequence

breakpoints

var xi

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

y-vars
y1,2 = 0 etc.

1 1 10 0 0 0

Figure 3.2.1: An exemplary sequential vector packing instance together with a
potential ILP solution, and a flow representation of the solution. The objective
value is 4.

the total resource usage is bounded byb. For the two consecutive breakpointsxu

andxv this amounts towu,v · yu,v ≤ b. Finally, Constraint (3.2.4) ensures the
correct total size of the bin vector.

3.2.2 An easy(1

ε
,

1

1−ε
)-Approximation

As a first step we relax the ILP formulation to an LP: here this means to have
xi, yu,v ∈ [0, 1] for xi ∈ X, yu,v ∈ Y . We claim that the following Algorithm
EPSROUNDING computes a(1

ε ,
1

1−ε)-approximation:

1. Solve the LP optimally. Let(X⋆, Y ⋆,b⋆) be the obtained fractional solu-
tion.

2. Set(X̂, Ŷ , b̂) = (X⋆, Y ⋆, 1
1−ε · b

⋆) andis = 0. Stepwise round(X̂, Ŷ ):

3. Letie > is be the first position for which
∑ie

i=is+1 x̂i ≥ ε.

4. Setx̂i = 0 for i ∈ {is + 1, . . . , ie − 1}, setx̂ie = 1. Reroute the flow
accordingly (see also Figure 3.2.2):

(a) Setŷis,ie = 1.

(b) Increasêyie,i by
∑ie−1

i′=is
ŷi′,i, for i > ie.

(c) Setŷis,i′ = 0 andŷi′,i = 0, for i′ ∈ {is + 1, . . . , ie− 1}, i > i′.

5. Set the newis to ie and continue in Line 3, untilis = n.

Theorem 3.2 The algorithmEPS ROUNDING is a (1
ε ,

1
1−ε)-approximation al-

gorithm for the sequential vector packing problem.

Proof. We show the desired result in three separate steps.
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is i′ i′′ ie

x̂is = 1 x̂i′′
x̂i′ x̂ie

< ε
≥ ε

is i′ i′′ ie

x̂is = 1 x̂i′′ = 0
x̂i′ = 0 x̂ie = 1

Figure 3.2.2: An example of the rerouting of flow in Lines 4 (a)-(c) of the algo-
rithm.

Integer Rounding. The following invariant is easy to see by considering Fig-
ure 3.2.2: at the beginning of each iteration step (i.e., at Line 3) the current,
partially rounded solution(X̂, Ŷ , b̂) corresponds to a valid flow, which is inte-
gral until positionis. From this invariant it follows that(X̂, Ŷ , b̂) in the end
corresponds to a valid integer flow.

At Most 1
ε -times the Number of Breakpoints. In Line 4, x̂i values which

sum up to at leastε (see Line 3) are replaced bŷxie = 1. Therefore, the rounding
increases the total value of the objective function by at most a factor of1ε .

At Most 1
1−ε -times the Total Bin Size. Again consider one step of the itera-

tion. We need to check that by rerouting the flow to go directlyfrom is to ie we
do not exceed the LP bin capacity by more than11−ε · b

⋆. We show the stronger
invariant that in each step after rerouting, the current, partially rounded solution
fulfills Constraint (3.2.3) untilie w.r.t. b̂ and fromie+1 to the end of the sequence
w.r.t.b⋆. First let us consider the increase ofŷie,i, for i > ie, in Line 4 (b). Since
the total increase is given directly by someŷi′,i which are set to0 (Line 4 (c)),
the Constraint (3.2.3) still holds after the change w.r.t.b⋆. In other words, flow
on edges is rerouted here onto shorter (completely contained) edges; this does
not change the feasibility of Constraint (3.2.3).

Now we consider the increase ofŷis,ie to 1. We will show that the total de-
mandwis,ie between the new breakpointsis andie is bounded by 1

1−ε · b
⋆. With

x̂is = 1 and since
∑ie−1

i=is+1 x̂i < ε (see Line 3), we know that
∑n

i=ie
ŷis,i =

x̂is −
∑ie−1

i=is+1 ŷis,i ≥ 1 −
∑ie−1

i=is+1 x̂i > 1 − ε; note that the first equality
holds by the flow conservation constraint (3.2.2). By Constraint (3.2.3) we ob-
tainwis,ie·

∑n
i=ie

ŷis,i ≤
∑n

i=ie
wis,i·ŷis,i ≤

∑

u,v:u<ie≤v wu,v ·ŷu,v ≤ b⋆, where
the last inequality follows by the invariant for the last step. Thus, plugging these
two inequalities together, we know for the total demandwis,ie <

1
1−ε · b

⋆ = b̂.
Since this holds for all iteration steps and thus for all consecutive breakpoints of
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the final solution, it is clear that multiplying the bin vector of the LP solution by
a factor 1

1−ε yields a valid solution for the ILP. �

Note that one would not actually implement the algorithm EPS ROUNDING.
Instead, it suffices to compute the bin vectorb⋆ with the LP and then multiply
it by 1

1−ε and evaluate the obtained bin vector, e.g., with the algorithm given in
Section 3.4.4.

3.2.3 A(1, 2)-Approximation

We start by proving some properties of the LP relaxation and then describe how
they can be applied to obtain the rounding scheme yielding the desired bicriteria
ratio.

Properties of the Relaxation

Let (X,Y,b) be a fractional LP solution; recall that theY variables represent
a flow. Let e1 = (u, v) and e2 = (u′, v′) denote two flow carrying edges,
i.e., yu,v > 0 and yu′,v′ > 0. We say thate1 is contained ine2 if u′ < u
and v′ > v, we also call(e1, e2) an embracing pair. We say an embracing
pair (e1, e2) is smaller than an embracing pair(ê1, ê2), if the length ofe1 (for
e1 = (u, v), its length isv − u) is less than the length of̂e1 and in case of equal
lengths, ifu < û (order by left endpoint). That is, for two embracing pairs with
distinct e1 and ê1 we always have that one is smaller than the other. We show
that the following structural property holds:

Lemma 3.3 (no embracing pairs)Any optimal fractional LP solution
(X⋆, Y ⋆,b⋆) can be modified in such a way that it contains no embracing
pairs without increasing the objective function and without modifying the bin
vector.

Proof. We setY = Y ⋆ and show how to stepwise treat embracing pairs contained
in Y , proving after each step that(X⋆, Y,b⋆) is still a feasible LP solution. We
furthermore show that this procedure terminates and in the end no embracing
pairs are left inY .

Let us begin by describing one iteration step, assuming(X⋆, Y,b⋆) to be a
feasible LP solution which still contains embracing pairs.Let (e1, e2), with e1 =
(u, v) ande2 = (u′, v′), be an embracing pair. We now modify the flowY to
obtain a new flowY ′ by reroutingλ = min{yu,v, yu′,v′} units of flow frome1, e2
onto the edgese′1 = (u, v′) ande′2 = (u′, v): y′u,v = yu,v−λ, y′u′,v′ = yu′,v′−λ
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Figure 3.2.3:Replacement ofλ units of flow one1 ande2 byλ units of flow one′1
ande′2 in Lemma 3.3.

andy′u′,v = yu′,v+λ, y′u,v′ = yu,v′+λ; see also Figure 3.2.3. The remaining flow
values inY ′ are taken directly fromY . It is easy to see that the flow conservation
constraints (3.2.2) still hold for the valuesX⋆, Y ′ (consider a circular flow ofλ
units sent in the residual network ofY on the cycleu′, v, u, v′, u′). SinceX⋆ is
unchanged this also implies that the objective function value did not change, as
desired. It remains to prove that the Constraints (3.2.3) still hold for the values
Y ′,b⋆ and to detail how to consecutively choose embracing pairs(e1, e2) in such
a way that the iteration terminates.

Feasibility of the Modified Solution. Constraints (3.2.3) are parameterized
over i ∈ {1, . . . , n}. We argue that they are not violated separately fori ∈
{u′ + 1, . . . , u}, i ∈ {u + 1, . . . , v}, andi ∈ {v + 1, . . . , v′}, i.e., the regions
b, c, andd in Figure 3.2.3. For the remaining regionsa ande it is easy to check
that the values of the affected variables do not change when replacingY by Y ′.
So let us consider the three regions:

Region b (d) The only variables in (3.2.3) which change when replacingY
by Y ′ for this region are:y′u′,v′ = yu′,v′ − λ and y′u′,v = yu′,v + λ. This
means that flow is moved to a shorter edge, which can only increase the slack of
the constraints: Withwu′,v < wu′,v′ it is easy to see that (3.2.3) still holds in
regionb. Regiond is analogous tob.

Regionc Here the only variables which change in (3.2.3) are:y′u,v = yu,v−λ,
y′u′,v′ = yu′,v′ − λ, y′u′,v = yu′,v + λ, andy′u,v′ = yu,v′ + λ. In other wordsλ
units of flow were moved frome1 to e′1 and frome2 to e′2. Let us consider the
fraction of demand which is contributed to (3.2.3) by these units of flow before
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and after the modification. Before (one1 ande2) this wasλ · (wu,v + wu′,v′)
and afterwards (one′1 ande′2) it is λ · (wu′,v + wu,v′). Since both quantities are
equal, the left hand side of (3.2.3) remains unchanged in region c.

Choice of(e1, e2) and Termination of the Iteration. In each step of the iter-
ation we always choose the smallest embracing pair(e1, e2), as defined above.
If there are several smallest embracing pairs (which by definition all contain the
same edgee1), we choose one of these arbitrarily.

First we show that the modification does not introduce an embracing pair that
is smaller than(e1, e2). We assume the contrary and say w.l.o.g. that the flow
added to edgee′1 creates a new embracing pair(e, e′1) that is smaller than the
(removed) embracing pair(e1, e2). Clearly,e is also contained ine2. Therefore,
before the modification(e, e2) would have been an embracing pair as well. Since
(e, e2) is smaller than(e1, e2) it would have been chosen instead, which gives the
contradiction.

It follows that we can divide the iterations into a bounded number of phases:
in each phase all considered embracing pairs are with respect to the samee1-type
edge. As soon as a phase is finished (i.e., no embracing pairs with the phase’s
e1-type edge remain) thise1-type edge will never be considered again, since this
could only happen by introducing a smaller embracing pair later in the iteration.
Thus, there are at mostO(n2) phases.

Now we consider a single phase during which an edgee1 is contained in
possibly several other edgese2. By the construction of the modification for
an embracing pair(e1, e2) it is clear thate2 could not be chosen twice in the
same phase. Therefore, the number of modification steps per phase can also be
bounded byO(n2). �

Choose a Flow Carrying Path

We will use the structural insights of the last section to prove that bin vector2 ·b⋆

yields a(1, 2)-approximation to the optimal solution.

Due to Lemma 3.3 an optimal fractional LP solution(X⋆, Y ⋆,b⋆) with-
out embracing pairs exists. Letpmin denote the shortest flow carrying path in
(X⋆, Y ⋆,b⋆), where shortest is meant with respect to the number of breakpoints.
Clearly, the length ofpmin is at most the objective function value

∑n
i=1 x

⋆
i , since

the latter can be seen as a linear combination of the path lengths of an arbitrary
path decomposition. Below we show that the integral solution corresponding



www.manaraa.com

3.2. Approximation Algorithms 23

pmin

is

e
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Figure 3.2.4:Extracting the integral solution. Edgee together with other poten-
tial edges inY ⋆ in Theorem 3.4.

to pmin is feasible for the bin vector2 ·b⋆, and thuspmin and2 ·b⋆ are our(1, 2)-
approximation. Observe that the approximation algorithm does not actually need
to transform an optimal LP solution, given, e.g., by an LP solver, into a solution
without embracing pairs. The existence of pathpmin in such a transformed solu-
tion is merely taken as a proof that the bin vector2 ·b⋆ yields less than

∑n
i=1 x

⋆
i

breakpoints. To obtain such a path, we simply evaluate2 · b⋆ with the algorithm
presented in Section 3.4.4 (b⋆ given by the LP solver).

Theorem 3.4 Given an optimal fractional LP solution(X⋆, Y ⋆,b⋆) without em-
bracing pairs, letpmin denote the shortest flow carrying path. The integral solu-
tion corresponding topmin is feasible for2 · b⋆.

Proof. We only have to argue for the feasibility of the solution w.r.t. the dou-
bled bin vector. Again we will consider Constraints (3.2.3). Figure 3.2.4 de-
picts an edgee on pathpmin and other flow carrying edges. We consider the
start and end positionis and ie in the subsequence defined bye. Denote by
Eis = {(u, v) | 0 ≤ u < is ≤ v ≤ n} (andEie, respectively) the set of all
flow carrying edges that crossis (ie) and byimin, (imax) the earliest tail (latest
head) of an arc inEis, (Eie). Furthermore, letE′ = Eis ∪ Eie. Summing up
the two Constraints (3.2.3) foris andie gives2b⋆ ≥

∑

(u,v)∈Eis
y⋆

u,v · wu,v +
∑

(u,v)∈Eie
y⋆

u,v ·wu,v =: A and thus

2b⋆ ≥ A ≥
∑

imin<i≤imax

∑

(u,v)∈E′ :
u<i≤v

y⋆
u,v · si (3.2.5)

≥
∑

is<i≤ie

∑

(u,v)∈E′ :
u<i≤v

y⋆
u,v · si =

∑

is<i≤ie

si = wis,ie . (3.2.6)

The second inequality in (3.2.5) is in general an inequalitybecause the setsEis

andEie need not be disjoint. For the first equality in (3.2.6) we relyon the fact
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that there are no embracing pairs. For this reason, each position betweenis andie
is covered by an edge that covers eitheris or ie. We have shown that the demand
between any two breakpoints onpmin can be satisfied by the bin vector2 ·b⋆. �

Observe that for integral resources the above proof impliesthat even⌊2b⋆⌋
has no more breakpoints than the optimal solution. Note alsothat it is easy
to adapt both approximation algorithms so that they can handle pre-specified
breakpoints. The correspondingxi values can simply be set to one in the ILP and
LP formulations.

3.3 Complexity Considerations

In this section, we study the computational complexity of the sequential vector
packing problem. First, we show that finding an optimal solution is NP-hard,
and then we consider special cases of the problem that allow apolynomial time
algorithm or that are fixed parameter tractable (FPT). Our NP-hardness proofs
also identify parameters that cannot lead to an FPT-algorithm.

3.3.1 Minimizing the Number of Breakpoints (Bins)

For all considered problem variants it is easy to determine the objective value
once a bin vector is chosen. Hence, for all variants of the sequential vector pack-
ing problem considered in this chapter, the corresponding decision problem is in
NP.

To simplify the exposition we first consider a variant of the sequential unit
vector packing problem where the sequence of vectors has prespecified break-
points, always afterw positions. Then the sequence effectively decomposes into
a set of windows of lengthw, and for each position in such a windowi it is suf-
ficient to specify the resource that is used at positionj ∈ {1, . . . , w}, denoted
assi

j ∈ {1, . . . , d}. This situation can be understood as a set of sequential unit
vector packing problems that have to be solved with the same bin vector. The ob-
jective is to minimize the total number of (additional) breakpoints, i.e., the sum
of the objective functions of the individual problems. Later, we also show strong
NP-hardness for the original problem.

Lemma 3.5 Finding the optimal solution for sequential unit vector packing with
windows of length 4 (dimensiond and bin sizeB as part of the input) is NP-hard.

Proof. By reduction from the NP-complete problem Clique [62] or more gener-
ally from k-densest subgraph [56]. LetG = (V,E) be an instance ofk-densest
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subgraph, i.e., an undirected graph without isolated nodesin which we search
for a subset of nodes of cardinalityk that induces a subgraph with the maximal
number of edges.

We construct a sequential unit vector packing instance(S, B) with windows
of length 4 and withd = |V | resources. Assume as a naming conventionV =
{1, .., d}. There is precisely one window per edgee = (u, v) ∈ E, the sequence
of this window isse = uvuv. The total bin size is set toB = d + k. This
transformation can be carried out in polynomial time and achieves, as shown
in the following, that(S, B) can be solved with at most|E| − ℓ (additional)
breakpoints if and only ifG has a subgraph withk nodes containing at leastℓ
edges.

Because every window contains at most two vectors of the sameresource,
having more than two units of one resource does not influence the number of
breakpoints. Every resource has to be assigned at least one unit because there
are no isolated nodes inG. Hence, a solution to(S, B) is characterized by the
subsetR of resources to which two units are assigned (instead of one). By the
choice of the total bin size we have|R| = k. A window does not induce a
breakpoint if and only if both its resources are inR, otherwise it induces one
breakpoint.

If G has a node induced subgraphG′ of sizek containingℓ edges, we choseR
to contain the nodes ofG′. Then, every window corresponding to an edge ofG′

has no breakpoint, whereas all other windows have one. Hence, the number of
(additional) breakpoints is|E| − ℓ.

If (S, B) can be scheduled with at most|E| − ℓ breakpoints, defineR as the
resources for which there is more than one unit in the bin vector. Now |R| ≤ k,
and we can assume|R| = k since the number of breakpoints only decreases if
we change some resource from one to two, or decrease the number of resources
to two. The setR defines a subgraphG′ with k nodes ofG. The number of
edges is at leastℓ because only windows with both resources inR do not have a
breakpoint. �

It remains to consider the original problem without pre-specified breakpoints.

Lemma 3.6 Let (S, B) be an instance of sequential (unit) vector packing of
lengthn with k pre-specified breakpoints andd resources (d ≤ B) where every
resource is used at least once.

Then one can construct in polynomial time an instance(S′, B′) of the (unit)
vector packing problem with bin sizeB′ = 3B+2 andd′ = d+2B+2 resources
that can be solved with at mostℓ + k breakpoints if and only if(S, B) can be
solved with at mostℓ breakpoints.
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Proof. The general idea is to use for every prespecified breakpoint some “stop-
ping” sequenceFi with the additional resources in a way that the boundB′ guar-
antees that there is precisely one breakpoint inFi. This sequenceFi needs to
enforce exactly one breakpoint, no matter whether or not there was a breakpoint
within the previous window (i.e., betweenFi−1 andFi). If we used same se-
quence forFi−1 andFi, a breakpoint within the window would yield a “fresh”
bin vector forFi. Therefore, the number of breakpoints inFi could vary depend-
ing on the demands in the window (and whether or not they incura breakpoint).

To avoid this, we introduce two different stopping sequencesF andG which
we use alternatingly. This way we are sure that between two occurrences ofF
there is at least one breakpoint. The resources1, . . . , d of (S′, B′) are one-to-
one to the resources of(S, B). The2B + 2 additional resources are divided into
two groupsf1, . . . , fB+1 for F andg1, . . . , gB+1 for G. The first pre-specified
breakpoint inS, the third and every other odd breakpoint is replaced by the se-
quenceF := f1f2· · ·fB+1f1f2 · · · fB+1, the second and all even breakpoints by
the sequenceG := g1g2· · ·gB+1g1g2· · ·gB+1.

To see the backward direction of the statement in the lemma, abin vec-
tor b for (S, B) resulting inℓ breakpoints can be augmented to a bin vectorb′

for (S′, B′) by adding one unit for each of the new resources. This does notex-
ceed the boundB′. Now, in (S′, B′) there will be the original breakpoints and
a breakpoint in the middle of each inserted sequence. This shows thatb′ results
in ℓ+ k breakpoints for(S′, B′), as claimed.

To consider the forward direction, letb′ be a solution to(S′, B′). Because
every resource must be available at least once, andB′−d′ = 3B+2−(d+2B+
2) = B − d, at mostB − d < B entries ofb′ can be more than one. Therefore,
at least one of the resourcesfi is available only once, and at least one of the
resourcesgj is available only once. Hence, there must be at least one breakpoint
within each of thek inserted stopping sequences. Letk + ℓ be the number of
breakpoints induced byb′ andb the projection ofb′ to the original resources.
Since all resources must have at least one unit and by choice of B′ andd′ we
know thatb sums to less thanB.

Now, if a subsequence ofS not containing anyf org resources can be packed
with the resourcesb′, this subsequence can also be packed withb. Hence,b
does not induce more thanℓ breakpoints in the instance(S, B) with pre-specified
breakpoints. �

Theorem 3.7 The sequential unit vector packing problem is strongly NP-hard.

Proof. By Lemma 3.5 and Lemma 3.6, with the additional observation that all
used numbers are polynomial in the size of the original graph. �



www.manaraa.com

3.4. Practical Algorithms 27

3.3.2 Polynomially Solvable Cases and FPT

Here, we consider the influence of parameters on the complexity of the prob-
lem, and ask whether fixed parameter tractable algorithms can exist, see Defini-
tion 2.2.

If the windows in the vector packing problem are limited to length three,
the problem can be solved in polynomial time: There is no interaction between
the resources, thus, it is impossible that avoiding a breakpoint induced by one
resource depends upon the multiple availability of anotherresource. Hence, a
natural greedy algorithm that always takes the resource that currently causes most
breakpoints is optimal. Additionally, Lemma 3.5 shows thatthe problem is NP-
hard even if all windows have length 4. Hence, the parameter window size does
not allow an FPT-algorithm if P6=NP.

On the other hand, for integralS andB, the parameterB allows (partly be-
caused ≤ B) to enumerate (see Section 3.4.3) and evaluate (Section 3.4.4) the
number of breakpoints in timef(B) · nO(1), i.e., this is an FPT-algorithm.

A constant upper limit on the number of breakpoints allows toenumerate all
positions of breakpoints and to determine the necessary binvector in polynomial
time. Note that this is not an FPT algorithm.

3.4 Practical Algorithms

In this section we consider different practical algorithmsfor sequential vector
packing together with some algorithmic questions about theenumeration and
evaluation of solutions that arise in the context of the second heuristic presented
here.

3.4.1 Greedy Algorithms

In this section we analyze two natural greedy heuristics. Given an input(S, B)
we denote byk(b) the minimal number of breakpoints needed for a fixed bin
vectorb. Observe that it is relatively easy to calculatek(b) in linear time. We
will discuss this in more detail in Section 3.4.4. The two greedy algorithms we
discuss here are GREEDY-GROW which grows the bin vector greedily starting
with the all one vector and GREEDY-SHRINK which shrinks the bin vector start-
ing with a bin vectorb with k(b) = 0 that initially ignores the bin sizeB.

Also in the light of the following observations it is important to specify the
tie-breaking rule for the case that there is no improvement at all after the addition
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Algorithm 1 : Algorithm GREEDY-GROW

input : an instance(S, B) of the sequential vector packing problem
output: bin vectorb

b←− 1 ; Bcurr←− d
while Bcurr < B do

// add the resource by which the most breakpoints are saved
rgreedy←− argmin1≤r≤dk(b1, . . . , br + 1, . . . , bd)
brgreedy←− brgreedy + 1 ; Bcurr←− Bcurr + 1

end
return b

Algorithm 2 : Algorithm GREEDY-SHRINK

input : an instance(S, B) of the sequential vector packing problem
output: bin vectorb

// start with minimal bin vector that incurs no breakpoints
b←−

∑n
i=1 si ; Bcurr←−

∑d
i=1 bi

while Bcurr > B do
// remove the resource by which the smallest increase in breakpoints is
incurred
rgreedy←− argmin1≤r≤dk(b1, . . . , br − 1, . . . , bd)
brgreedy←− brgreedy− 1 ; Bcurr←− Bcurr− 1

end
return b
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of a resource. We show next that GREEDY-GROW can be forced to produce a
solution only by this tie breaking rule, which is an indicator for its bad perfor-
mance:

Observation 3.8 Given any instance(S, B), this instance can be modified to an
instance(S′, B′), with n′ = n, d′ = 2d,B′ = 2B such that all ofGREEDY-
GROW’s choices of which resource to add depend entirely on the tie-breaking
rule.

The idea is to split each resourcer into two resourcesr1, r2 and to replace
each occurrence ofr in a demand vectors by a demand forr1 and r2. We
call this transformationdoublingand will come back to it in the experimental
section. Then, considering GREEDY-GROW’s approach to reduce the number of
breakpoints, increasingr1 or r2 alone is not enough. Only ifr1 andr2 are both
increased, the number of breakpoints may decrease. That is,for all resources the
number of saved breakpoints in the beginning is zero, and greedy is forced to
take an arbitrary resource in Step 1 and then the partner of this resource in Step
2. Then GREEDY-GROW again chooses an arbitrary resource in Step 3 and its
partner in Step 4, and so on. With this scheme it is obvious that GREEDY-GROW

can be fooled to produce arbitrary solutions.

It follows that GREEDY-GROW with an unspecified tie-breaking rule can be
led to produce arbitrarily bad solutions. Also GREEDY-SHRINK can produce
bad solutions depending on the tie breaking scheme as the following observation
shows.

Observation 3.9 There are instances withd resources on which the solution pro-
duced byGREEDY-SHRINK is a factor of⌊d/2⌋ worse than the optimal solution,
if the tie breaking-rule can be chosen by the adversary.

Let k = ⌊d/2⌋, consider the following unit vector instance with2k resources
andB = 3k:

1 · · ·k 1 · · · k(k + 1)(k + 1)(k + 2)(k + 2) · · · (2k)(2k) .

At the beginning of the algorithmb is set to(2, . . . , 2). In the first step the
removal of each of the resources incurs one breakpoint. Therefore, GREEDY-
SHRINK deletes an arbitrary resource depending on the tie-breaking scheme. We
let this resource be one of the lastk ones. After this deletion the situation remains
unchanged except for the fact that the chosen resource must not be decreased any
more. It follows that ink steps GREEDY-SHRINK sets the lastk resources to
one, which incurs a total cost ofk, whereas the optimal solution sets the first
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k resources to one, which incurs a cost of1. Thus, the ratio of greedy versus
optimal solution isk = ⌊d/2⌋.

For the experiments (see Section 3.5) we use for both heuristics a round-
robin tie breaking rule that cycles through the resources. Every time a tie occurs
it chooses the cyclic successor of the resource that was increased (decreased) in
the last tie.

3.4.2 Enumeration Heuristic

In this section we present an enumeration heuristic for integral demand vectors
si ∈ Nd, i ∈ {1, . . . , n}, that is inspired by a variant of Schöning’s 3-SAT al-
gorithm [114] that searches the complete hamming balls of radius⌊n/4⌋ around
randomly chosen assignments, see [42].

The following algorithm uses a similar combination of randomized guessing
and complete enumerations of parts of the solution space that are exponentially
smaller than the whole solution space. The idea is to guess uniformly at random
(u.a.r.) subsequencesSi1,i2 of the sequence that do not incur a breakpoint in a
fixed optimal solutionbopt. For such a subsequence we know thatbopt ≥ wi1,i2 .
In particular, if we know a whole setW of such total demand vectors that all
come from subsequences without breakpoints forbopt, we know thatbopt ≥
maxw∈W w must hold for a component-wise maximum. This idea leads to the
RANDOMIZED HEURISTIC ENUMERATION (RHE) algorithm, see Algorithm 3.
The parameter subsequence length can be set to meaningful values if (estimates

of) the minimal number of breakpoints are available. The following lemma states
the resulting success probability of the algorithm:

Lemma 3.10 Let bopt be an optimal bin vector for an integral instance(S, B)
and choose ssl as⌊ n

2k+1⌋ + 1, wherek is the minimal number of breakpoints.
Then for each of the demand vectorswσi,σi

, i ∈ {1, . . . , p} in AlgorithmRHE
it holds thatPr[wσ

i
,σi
≤ bopt] ≥

1
2 .

Proof. A sufficient (but not necessary) condition forwσi,σi
≤ bopt is that the

optimal solutionbopt has no breakpoint in the subsequenceSσ
i
,σi

. There are
n− ssl+1 many intervals that are chosen uniformly at random. Each breakpoint
can hit only ssl− 1 of them. Therefore,n− ssl+ 1− k(ssl− 1) is a lower bound
on the number of intervals without breakpoints. This boundsthe probability of
choosing an interval that contains no breakpoint in its interior from below by
n−ssl+1−k(ssl−1)

n−ssl+1 . By equating this with12 we get the above choice for ssl without
the flooring. By rounding down to the next integer the successprobability cannot
decrease. �
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Algorithm 3 : RANDOMIZED HEURISTIC ENUMERATION (RHE)

input : an instance(S, B) of the sequential vector packing problem, the
subsequence length ssl and a numberp of repetitions

output: a feasible solutionb

t←− 01

for i ∈ {1 . . . p} do2

σi ←−u.a.r {0, . . . , n− ssl} ; σi ←− σi + ssl3

t←− max
{
t,wσi,σi

}
4

end5

minstops←−∞6

forall b ∈ {b′ | b′ ≥ t,
∑d

j=1 b
′
j = B } do7

stops←− evaluate(b)8

if stops< minstopsthen minstops←− stops; brhe ←− b9

end10

return brhe11

As the value ofk is not known a priori we use (over-)estimates in the ex-
periments, which we adapt in the course of the algorithm as described in Sec-
tion 3.5. Note that an overestimate ofk leads in general to a success probability
greater than12 but to a smaller subsequence length than in the lemma. The first
subsequence that is guessed increases the lower bound vector by its full length.
Subsequent guesses can, but need not, improve the lower bounds. The growth of
the lower bound depends on the distribution of demand vectors in the fixed input
sequence and is therefore difficult to analyze for arbitrarysuch sequences. On
the other hand, analyzing the growth of the lower bound seemspossible for ran-
dom input sequences, but we doubt that this would give any meaningful insights.
For this reason, we only give experimental evidence that thealgorithm performs
well, see Section 3.5.

3.4.3 Enumeration

As easy as the enumeration in the second phase of our RHE-algorithm looks,
this should be done efficiently. So let us have a look at the problem at hand:
We want to enumerate all possibleb1, . . . , bd with sumB and individual lower
and upper boundsℓ(i), u(i) ∈ {0, . . . , B} on the summandsℓ(i) ≤ bi ≤ u(i),
i ∈ {1, . . . , d}. For short, we also denote these bounds as vectorsl andu. In the
literature on combinatorial generation algorithms such summations with upper
bounds only are known as(d)-compositions with restricted parts, see [111] or
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[99]. There is a bijection to combinations of a multiset. Allcompositions with
restricted parts can be enumerated by a constant amortized time (CAT) algorithm,
which can be easily extended to the case with lower bounds without changing
the CAT behavior. We give the modified algorithm SUMMATIONS(B, d, U) that
enumerates the compositions with restricted parts in colexicographical order for
convenience and refer to [111] for its unchanged analysis. The total number of
compositions with restricted parts for givenl andu is the Whitney number of the
second kind of the finite chain product(u(1)− ℓ(1)+1)×· · ·×(u(r)− ℓ(r)+1),
wherex denotes a chain ofx elements, see again [111] for details.

Procedure SUMMATIONS(positionp, resourcer, boundn)

input : dimensiond, lower bound vectorl, upper bound vectoru,
sumB

output : SUMMATIONS(B −
∑d

r=1 ℓ(r), d + 1,
∑d

r=1 u(r) − ℓ(r))
evaluates alld-compositions with restricted parts for the
above parameters.

if p = 0 then
evaluate b

else
for c ∈ {max(0, p− n+ u(r) − ℓ(r)) . . .min(u(r)− ℓ(r), p)} do

br ←− c+ ℓ(r)
SUMMATIONS(p− c, r − 1, n− u(r) + ℓ(r))

end
br ←− ℓ(r)

end

The initial call is SUMMATIONS(B′, d+1, U ′) forB′ = B−
∑d

r=1 ℓ(r) and

U ′ =
∑d

r=1 u(r) − ℓ(r). This algorithm has CAT behavior forB′ ≤ U ′/2. For
B′ > U ′/2 there is a similar algorithm that can be adapted from algorithmGEN2
in [111]. We sum up the results of this section in the following theorem.

Theorem 3.11 Thed-compositions with restricted parts and lower bounds nec-
essary for algorithmRHE can be enumerated in constant amortized time.

3.4.4 Evaluation

For the general problem with demand vectorssi ∈ Qd
+, i ∈ {1, . . . , n}, the

evaluation of a given bin vectorb can be done in the obvious way inO(n · d)
time: Scan through the sequence starting at the last breakpoint πℓ (initially at
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π0 = 0) updating the total demand vectorwπℓ,i of the current bin until the
addition of the next vectorsi+1 in the sequence would make the demand vector
exceedb. Then add breakpointπℓ+1 = i and continue the scan with the next bin
starting from there.

In the special case of sequential unit vector packing the runtime can be im-
proved toO(n), since for each demand vector only one of thed resources needs
to be updated and checked.

For a single evaluation of a bin vector this algorithm is basically the best
one can hope for. On the other hand, in the setting of our heuristic enumeration
algorithm where many bin vectors are evaluated, the question arises, whether
we can speed up the evaluations if we allow for preprocessing. We describe
an approach that we developed for our application, that is, an approach for the
sequential unit vector packing problem with large values ofn compared tok,
the number of breakpoints. It is possible to extend parts of the approach to the
general problem with a loss in space efficiency.

A first simple approach builds an(n × d × B) tableT1 as sketched in Fig-
ure 3.4.1. In this table we store in entryT1(p, r, δ) the position of the next break-
point in the sequence starting from positionp for a bin vectorb with capacityδ
for resourcer, i.e.,br = δ, andbk =∞ for k 6= r. To evaluate a given bin vector
b we start at position1 and inspect positions(1, r, br) for 1 ≤ r ≤ d. The next
breakpoint must be at the minimum of these values. Thus, we have

πi+1 = min
1≤r≤d

T1(πi, r, br) . (3.4.1)

Equation 3.4.1 directly gives anO(kd) algorithm for the evaluation of a bin vec-
tor. Herek denotes as usual the number of breakpoints. On instances with
kd ≪ n this is a speedup. The space complexity of this approach seems to
be Θ(n · d · B) at first glance. But notice that between two occurrences of a
resourcer in the sequence the value ofT1(·, r, ·) remains the same. More pre-
cisely, if for all p′ with p1 ≤ p′ < p2 it holds thatsp′ 6= r, then we have
T1(p1, r, δ) = T1(p2, r, δ) for all δ. Let us call such an interval with equal en-
tries for a given resourcer a block. An example can be found in Figure 3.4.1,
where the blocks are depicted as grey rectangles. The total number of blocks is
bounded byn + d = O(n) because at each position exactly one block ends in
the setting of unit vector packing. Also the answer vectors in the blocks need
not be stored explicitly: In thei-th block of resourcer the table entry forbr is
simply the position before the end position of blocki + br as indicated by the
exemplary arrows in the figure. Therefore, in our approach westore the block
structure in an array of sizeO(n) to get a constant lookup time for a given table
entryT1(p, r, δ). More precisely, we stored arrays{A1, . . . , Ad} of total size
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1 2 3 4 · · · 1 2 3 4 · · ·

b1 b2

2
3
1
1
2
1
5

1 2 3 4 · · ·

bd
· · ·

1 2 3 4 · · ·

b3

1

3
7
4

2

1

1
3
2...

[3 5 7 11 . . . ] [4 12 15 . . . ] [8 14 . . . ]

Figure 3.4.1:Simple data structure that accelerates the evaluation of a bin vec-
tor. The first column shows an exemplary unit vector demand sequence, i.e., the
rows correspond to positions inS. The exemplary entries in the table stand for
the position of the next breakpoint in the sequence startingfrom the current row
for a bin vector with capacityi for the resource of the current column and no
resource bound for the other resources. The solid arrows show the minima of
Equation 3.4.1 for the example bin vector(2, 1, 1, . . . , 1). Breakpoints are high-
lighted in the sequence (leftmost column). The exemplary dotted arrows indicate
the end positions of the blocks, before which the relevant breakpoints are located.
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O(n), such that{Ar(i)} gives the end position of blocki of resourcer or equiv-
alently the position of thei-th occurrence ofr in S. It is easy to see that the block
structure can be (pre-)computed in linear time.

However, with this approach a different problem arises: After the computa-
tion of breakpointπi+1, we need to know at which positions we should access
each of the arrays next. To answer this question we introducea second table.
Let T2 be an(n × 2)-table that stores inT2(p, 1) the index of the (unique) new
block1 that starts at positionp and inT2(p, 2) the index of the current block of
resource(p mod d) + 1 in arrayA(p mod d)+1. In order to recompute the indices
for breakpointπi+1 we read thed rows{T2(πi+1 − d + 1, ·), . . . , T2(πi+1, ·)}.
Each resourcer occurs once in the second column of the read rows and might
occur several times in the first column. Take as index for resourcer the value
of the last occurrence ofr in the read rows, regardless of the column, i.e., the
occurrence with the highest row index. This approach correctly computes all
new indices in the arrays{A1, . . . , Ad} in O(d) time, which is also the time that
a single step takes without this index computation. Obviously, tableT2 needs
O(n) space. Alternatively, this tableT2 can be understood as a persistent ver-
sion of the list containing for every resource its next occurrence, that is updated
during a scan along the sequence. In this situation a generalmethod for partially
persistent data structures like [48] can be applied and yields the same time and
space bounds. Altogether, we have shown the following theorem:

Theorem 3.12 Given a sequenceS we can construct a data structure withO(n ·
d ·B) space and preprocessing time such that an evaluation query for sequential
vector packing for a bin vectorb takesO(kd) time, wherek denotes the number
of breakpoints forb. For sequentialunit vector packing onlyO(n) space and
preprocessing time is needed.

Note that for RHE if we have already found a bin vector withk′ many break-
points we can stop all subsequent evaluations already afterk′ · d many steps.

3.5 Experiments

In this section we report on some experiments on real world data. The data
are electronically available atwww.inf.ethz.ch/personal/mnunkess/
SVP/. All instances are sequential unit vector packing instances.

1Strictly speaking, the first column in tableT2 is not necessary as it simply reproduces the se-
quence. Here it clarifies the presentation and the connection to the technique in [48].
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We implemented the greedy algorithms, the enumeration heuristic and the
integer linear program. We performed our experiment on Machine B, see Ap-
pendix A.1.

3.5.1 Mixed Integer Program

Even if the ILP-formulation of Section 3.2.1 is a good starting point for our
theoretical results, it turns out that in practice only medium sized instances can
be solved with it. One problem is the potentially quadratic number of edge flow
variables that makes the formulation prohibitive already for small instances. To
reduce the number of variables, it is helpful to have an upperbound on the length
of the longest edge. One such bound is of courseB, but ideally there are smaller
ones. As our real-world instances are windowed instances the window size is
a trivial upper bound that helps to keep the number of variables low. A further
problem is that, even if the bin vector is already determined, the MIP-solver
needs to branch on thex andy variables to arrive at the final solution. This
can be avoided by representing the bin vector componentsbr as a sum of 0-1-
variableszr

i , such thatbr =
∑

i z
r
i andzr

i ≥ zr
i+1. If an edgee usesi units

of resourcer, i.e., ther-th entry ofwe is i, we include a constraint of the form
ye ≤ zr

i . This allows to use the edge only if there are at leasti resources available.
With these additional constraints, the edge variablesy andx need no longer be
binary. For integral values ofzr

i , only edge-variables that do not exceed the bin
vector can have a value different from zero, so that in this case every fractional
path of the resulting flow is feasible with respect to the bin vector, and thus all
paths have the same (optimal) number of breakpoints (otherwise a shorter path
could be selected resulting in a smaller objective functionvalue). With this mixed
integer linear program the number of branching nodes is drastically reduced, but
the time spent at every such node is also significantly increased. Still, the overall
performance of this program is a lot better than the originalinteger program.
Small instances (inst2 and inst3) can now be solved to optimality within a few
minutes, cf. Table 3.1 that summarizes information on our instances. The bigger
instance inst4 of dimension 22 can be solved to optimality for total bin sizes in
the range from 22 to 130 within less than 3 hours.

We observed that on this mixed integer program feasible solutions are found
after a small fraction of the overall running time. Hence, weconsider this ap-
proach also as an alternative heuristic to come up with good solutions.
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3.5.2 Setup and Computational Results

We will mainly compare solution qualities, because the running times of the dif-
ferent approaches are orders of magnitude apart. On many of the instances a
calculation for a fixedB takes at most some seconds for the greedy algorithms
and several hours for the mixed integer linear program. For our experiments,
we let the enumeration heuristic run for 10 minutes which seems like a realis-
tic maximum time that an “online” user would be willing to wait for a result in
our application. This value is relatively arbitrary, we also observed good results
for shorter running times. We then fix the number of repetitions of the guessing
phase of RHE to be as many as it takes to let‖t‖1, the sum of the guessed lower
bounds, exceed some fraction ofB. This fraction is initially chosen as99% and
adaptively decreased after each run as long as the targeted time of 10 minutes is
not exceeded. The subsequence length is initially fixed withrespect to the es-
timated number of breakpoints that we get by running both greedy approaches.
We set it to one half times the average distance between two breakpoints and
increase it adaptively if the lower bound does not grow any more after a fixed
number of repetitions in the initialization phase. By the adaptive choice of both
the subsequence length and the fraction the algorithm is robust with respect to
changing values ofB, d and the time that it is run.

In Figure 3.5.1 we show the relative performances on our biggest real world
instance (Inst1). The different data points correspond to the algorithms GREEDY-
GROW, GREEDY-SHRINK, RHE and the linear relaxations of the two different
ILP formulations, i.e., the one with (“frac”) and the one without (“frac d”) the
z-variables introduced in Section 3.5.1. The values represent the ratio of the
solution found by the algorithm to the optimal integral solution that we calculated
using the mixed integer programming formulation. The figureshows that for
small values ofB GREEDY-GROW produces results that are close to optimal,
whereas for bigger values the quality gets worse. An explanation for this behavior
is that GREEDY-GROW builds a solution iteratively. As the results of Section
3.4.1 show, the greedy algorithms can be forced to take decisions based only on
the tie-breaking rule. On this instance tie-breaking is used at several values of
B, which leads to an accumulation of errors in addition to the inherent heuristic
nature of the method. Note that by definition GREEDY-SHRINK is optimal for
B = ‖

∑n
i=1 si‖1, which is 196 on this instance. In order to have a meaningful

scale we let thex-axis stop before that value.

In Figure 3.5.2(a) we present the quality of the solutions delivered by RHE
relative to the optimal solution on four further instances.Note that for different
instances different values ofB make sense. Instance Inst1-doubled is obtained
from Inst1, by the doubling transformation used in Observation 3.8.
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Figure 3.5.1: Computational results for the different approaches. Plot of ratio
of solution value to optimal solution value versus total binsizeB.

In Figure 3.5.2(b) we compare the best of the two greedy results to the result
of RHE2 . Instance rand-doubled is an instance where first the demandunit vec-
tors are drawn uniformly at random and then a doubling transformation is done
to make the instance potentially more complicated. It couldnot be solved to op-
timality by our MIP approach and does therefore not occur in Figure 3.5.2(a).
Compared to the other instances the greedy algorithms do notperform too badly.
One reason for this is that we chose a uniform distribution for the resources.
Therefore, the tie-breaking rules make the right choices “on average”. On the
other hand, on the doubled real-world instance Inst1-doubled RHE gives supe-
rior results and in particular for higher values ofB the greedy algorithms perform
comparatively poorly.

3.6 Open Problems

The main open problems for sequential vector packing are:

2Note that even if we use the greedy algorithms to determine the parameter settings of RHE, these
results are not visible to RHE.
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(a) Ratio of enumeration heuristic to optimal solution on five instances.
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(b) Ratio of enumeration heuristic to best of greedy algorithms on five instances.

Figure 3.5.2:Results on the instances of Table 3.1.
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name n d window size note
inst1 4464 24 28

inst1-doubled 8928 48 56 inst1, “doubled”
inst2 9568 8 28
inst3 7564 7 28
inst4 4464 22 28

rand-doubled 2500 26 2500 “doubled” random instance

Table 3.1: Summary information on the instances

• What is the best achievable approximation ratio with respect to the number
of breakpoints or the size of the bin-vector?

• How is the “best-possible” trade-off curve between these two goals?

• Is there a method to analyze the growth of the lower bounds of the ran-
domized enumeration heuristic in a meaningful way?

• More generally: Is there a practical algorithm or heuristicthat clearly out-
performs our algorithms on instances similar to our test instances?
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Foundations of LP-based
Optimization Techniques

Die beste Basis für die Grundlage ist das Fundament.
(toast)

In this section we present the theoretical foundations of the railroad optimiza-
tion related material covered in Chapter 5. In contrast to the very brief algorith-
mic preliminary Chapter 2 we will describe in more detail theunderlying theory
because this topic is further off the classical computer science canon.

4.1 Background

Generally, the entity we are dealing with are linear programs of the form

zLP = max
{
cx : Ax ≤ b, x ∈ Rn

+

}
, (LP)

and integer linear programs of the form

zIP = max
{
c′x : A′x ≤ b′, x ∈ Zn

+

}
, (IP)

whereA,A′ ∈ Rm×n, b, b′ ∈ Rm, c, c′ ∈ Rn. In this presentation we will not
distinguish between column and row vectors notation-wise,i.e., it should always
be possible to infer a meaningful interpretation of the vectors as column and row
vectors from the formulae. This slightly sloppy approach isalso adopted in the
classical textbook [97]. In contrast to the general integerprogramming problem

41



www.manaraa.com

42 Chapter 4. Foundations of LP-based Optimization Techniques

(for example in the form IP) the linear programming problem (for example in the
form LP) can be solved in polynomial time [79].

One goal of this section is to show how to use linear programming methods to
obtain solutions to integer programs of the form IP. One obvious way to do so is to
setA = A′, b = b′, c = c′. In this case LP is called thelinear relaxationof IP and
it holdszIP ≤ zLP. Furthermore, if the optimal solutionxopt to zLP happens to be
integral, it is an optimal solution to IP. Obviously, for NP-complete problems this
easy case does not occur in general. Two approaches that use linear programming
to find optimal or at least provably good solutions to IP arebranch-and-cutand
branch-and-pricealgorithms.

In this chapter, we review some of the basic theory necessaryfor the under-
standing of these approaches: Linear Programming Duality,the Simplex Algo-
rithm, some fundamental theorems from Polyhedral Theory, and finally the basic
branch-and-cut and branch-and-price approaches themselves. As most of this is
well-established theory that has been presented from different angles in several
textbooks we will not prove all results. The outline and mostof the theorems
of the first part of this section follow parts of [97] and are complemented with
material from [81, 29, 128, 6, 133, 115, 91].

4.2 Duality

With every (primal) linear program we can associate adual linear program, the
dual of which is again the same primal linear program. It has proven fruitful to
study the properties of such primal/dual pairs of linear programs. Here, we will
consider the following linear program P and its dual D:

zLP = max{cx : Ax ≤ b, x ∈ Rn
+} (P)

wLP = min{ub : uA ≥ c, u ∈ Rm
+} (D)

It is straight-forward to show that the dual of D is again P. Ifboth P and D are
feasible, we can get upper bounds tozLP from the dual:

Lemma 4.1 (Weak Duality) If x∗ is primal feasible andu∗ is dual feasible, then
cx∗ ≤ zLP ≤ wLP ≤ u∗b.
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Proof. Dual feasibility and nonnegativity ofx∗ implies

cx∗ ≤ u∗Ax∗
(

=

n∑

j=1

( m∑

i=1

aijui

)

xj

)

. (4.2.1)

Primal feasibility and nonnegativity ofu∗ implies

( m∑

i=1

( n∑

j=1

aijxj

)

ui =

)

u∗Ax∗ ≤ u∗b . (4.2.2)

As this holds for any primal-dual feasible pair, it followszLP ≤ wLP . �

The strong version of the above theorem states that for primal/dual feasible
linear programs even equality holds for the primal objective valuezLP and the
dualwLP.

Theorem 4.2 (Strong Duality) If either of zLP andwLP is finite, then bothP
andD have finite optimal value andzLP = wLP.

The correctness of this theorem follows from the correctness of the simplex
algorithm that we review in the next section.

Corollary 4.3 There are four possibilities for a dual pair of problems P andD.

1. zLP andwLP are finite and equal.

2. zLP =∞ and1 D is infeasible.

3. wLP = −∞ and P is infeasible.

4. Both P and D are infeasible.

By strong duality(x∗, u∗) is a pair of primal/dual optimal solutions if and
only if cx∗ = bu∗. For this to happen, equations (4.2.1) and (4.2.2) have to
hold with equality. From this the following result about thestructure of optimal
solutions follows (after inspection of equations (4.2.1) and (4.2.2)).

Theorem 4.4 (Complementary Slackness)Letx andu be primal and dual fea-
sible solutions, respectively. Thenx andu are both optimal if and only if the
following two conditions hold:

1In this section we use the slightly sloppy notation “zLP = ∞” to say that the primal is un-
bounded, respectively for the dual.
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Primal complementary slacknessFor each column index1 ≤ j ≤ n either
xj = 0 or

∑m
i=1 aijui = cj .

Dual complementary slacknessFor each row index1 ≤ i ≤ m eitherui = 0
or

∑n
j=1 aijxj = bi.

This simple theorem is crucial both for the general theory oflinear program-
ming and for the analysis of many approximation algorithms.Another simple
but useful result isFarkas’ Lemma, which gives a certificate for the infeasibility
of a system of linear inequalities.

Theorem 4.5 (Farkas’ Lemma) EitherQ := {x ∈ Rn
+ : Ax ≤ b} is nonempty

or (exclusively) there existsv ∈ Rm
+ such thatvA ≥ 0 andvb < 0.

Proof. ConsiderzLP = max{0x : Ax ≤ b, x ∈ Rn
+} and its dualwLP =

min{vb : vA ≥ 0, v ∈ Rm
+}. Settingv = 0 yields a dual feasible solution.

Therefore, by Corollary 4.3 only the following two cases canoccur:

1. zLP = wLP = 0, thenQ 6= ∅ and for allv ∈ Rm
+ it holds that ifvA ≥

0 thenvb ≥ 0.

2. wLP = −∞, thenQ = ∅ and there must be av ∈ Rm
+ such thatvb < 0 and

vA ≥ 0.

�

There are more variants of the Farkas’ Lemma that can easily be shown to be
equivalent. An exemplary one is

Corollary 4.6 Either {x ∈ Rn
+ : Ax = b} 6= ∅ or {v ∈ Rm : vA ≥ 0, vb <

0} 6= ∅.

4.3 Simplex Algorithm

Before we present the simplex algorithm, we first introduce the necessary termi-
nology to describe this algorithm concisely. For ease of presentation we consider
linear programs with equality constraints, in particular we redefine what we mean
by a linear program of form LP in this section:

zLP = max{cx : Ax = b, x ∈ Rn
+} (LP)

wLP = min{ub : uA ≥ c, u ∈ Rm} (DLP)
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The theorems on weak and strong duality and complementary slackness also
hold for this formulation. We assume that redundant equations (in the linear
algebra sense) inA have been removed and thus rank(A) = m ≤ n. From
this it directly follows that there exists anm ×m nonsingular submatrixAB =
(aB1 , . . . , aBm

). Without loss of generality, we assume thatAB consists of the
first m columns ofA. Let the rest ofA’s columns be the matrixAN , so that
we can writeA = (AB , AN ) andABxB + ANxN = b for Ax = b. As AB

is of full rank, it is meaningful to definexB = A−1
B b andxN = 0. The vector

x = (xB , xN ) is a solution toAx = b.

Definition 4.7 • The nonsingularm×m matrixAB is called abasis.

• The solutionxB = A−1
B b, xN = 0 is called abasic solutionofAx = b.

• xB is the vector ofbasic variablesandxN is the vector ofnonbasic vari-
ables.

• If xB = A−1
B b ≥ 0 then(xB , xN ) is called abasic primal feasible solution

to LP andAB is called aprimal feasible basis.

Similarly, for the dual letc = (cB, cN ) be the partition ofc induced by
the index setB of the basis. We setu = cBA

−1
B ∈ Rm

+ , the motivation for
which are the primal complementary slackness conditions. Recall that we are
considering a formulation with equality constraints in theprimal LP. Therefore,
the dual complementary slackness conditions are always fulfilled. With the above
setting the slackuA− c of the dual constraints is given by:

uA− c = cBA
−1
B (AB , AN )− (cB, cN ) = ( 0

︸︷︷︸

“xB”

, cBA
−1
B AN − cN

︸ ︷︷ ︸

“xN”

) . (4.3.1)

As alsoxN = 0, the complementary slackness conditions are always fulfilled,
so that the definitionu = cBA

−1
B leads to a pair of primal and dual solutions

(xB , xN ) = (A−1
B b, 0) andu = cBA

−1
B that is complementary slack. On the

other hand, it is not guaranteed thatu is a dual feasible solution. For this, we need
uA ≥ c, which simplifies tocBA

−1
B AN ≥ cN from (4.3.1). If this inequality

holds,AB is called adual feasible basis. From the complementary slackness
theorem it follows that ifAB is primal and dual feasible, thenx = (xB , xN ) =
(A−1

B b, 0) is an optimal solution to LP andu = cBA
−1
B is an optimal solution to

DLP.

Given a basisB, it is useful to rewrite the LP in a form that reflects the choice
of B. The following equivalent reformulation of LP is called thecanonical form
of a linear program:
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zLP = cBA
−1
B b+ max(cN − cBA

−1
B AN )xN (LPB)

xB +A−1
B ANxN = A−1

B b

xB ≥ 0, xN ≥ 0

Let AN = A−1
B AN , b = A−1

b b andcN = cN − cBA
−1
B AN . Then, LPB

becomes

zLP = cBb+ max cNxN (LPB)

xB +ANxN = b

xB ≥ 0, xN ≥ 0 .

Analogously, we defineaj = A−1
B aj andcj = cj − cBaj . Then we can

rewriteLPB in the following form:

zLP = cBb+ max
∑

j∈N

cjxj (LPB)

xB +
∑

j∈N

ajxj = b

xB ≥ 0, xN ≥ 0

Apart from the importance for the general simplex algorithmthe above form
has intuitive appeal: For a feasible basisB we can directly read off the values
of the basic primal feasible solutionx∗ associated withB asx∗ = (b, 0). Fur-
thermore, dual feasibility (and therefore optimality for aprimal feasible basis) is
equivalent toc ≤ 0. The value

cN = cN − cBAN = cN − uAN (4.3.2)

is called thereduced price vector. For minimization problems it is called the
reduced cost vector. Observe that the prices can be calculated independently of
each other, i.e.,

cj = cj − uaj . (4.3.3)

The first summandcB b̄ in the objective function of LPB is the objective value
for the current basic feasible solution, the sum

∑

j∈N cjxj expresses in terms of
reduced prizes the potential improvement from increasing non-basic variables.
From this formulation we can also read off simple upper bounds on the objective
function, which we also use in our column-generation algorithm.
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Lemma 4.8 Assume that
∑n

j=1 xj ≤ κ holds thencBb ≤ zLP ≤ cBb + κcmax,
wherecmax = maxj∈N cj .

Two given basesAB andAB′ areadjacentif |B \ B′| = |B′ \ B| = 1,
i.e., B′ can be obtained fromB by exchanging one column. The simplex al-
gorithm to be presented below works by moving from one basis to an adjacent
one and iterating this step. For such a move we have to decide which column
enters and which one leaves the basis. If all primal basic feasible solutions are
non-degeneratein the sense defined below, we will see that the entering column
determines the leaving column.

Definition 4.9 (Degeneracy)A primal basic feasible solutionxB = b, xN = 0
is degenerateif bi = 0 for somei.

Lemma 4.10 Suppose all primal basic feasible solutions are nondegenerate. If
AB is a primal feasible basis andar is any column ofAN , then the matrix
(AB , ar) contains, at most, one primal feasible basis other thanAB.

Proof. All variables inN \ {r} have to stay nonbasic, so that we can write the
constraints as

xB + arxr = b

xB ≥ 0, xr ≥ 0 .

case 1ar ≤ 0. Then asxB = b−arxr it follows that to whatever positive value
α > 0 we setxr, no basic variable will ever become zero. Therefore, there
is no other primal feasible basis in(AB , ar) thanAB.

case 2At least one component ofar is positive. Then defineλ by theminimum
ratio rule

λr = min{bi/air : air > 0} = bs/asr , (4.3.4)

so thatb−arλr ≥ 0 andbs−asrλr = 0. An adjacent primal feasible basis
AB(r) can be obtained fromAB by deletingBs from B and replacing it
with r. By the nondegeneracy assumption no other basic variable thanxs

becomes zero and no other adjacent basis exists.

�

In order to move from the canonical form LPB to LPBr one can execute one
Gauss elimination step with pivot elementasr.
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Corollary 4.11 SupposeAB is a primal feasible nondegenerate basis that is not
dual feasible andcr > 0. Then ifar ≤ 0, the primal is unbounded. Otherwise, at
least one component ofar is positive andAB(r) the unique primal basis adjacent
toAB that containsar is such thatcB(r)xB(r) > cBxB.

Having introduced the basic terminology we can now concisely describe the
main part of the primal simplex algorithm.

Primal Simplex Algorithm, Phase II

Initialization Start with a primal feasible basisAB.

Optimality Test If cN ≤ 0, AB is dual feasible, stop.(xB , xN ) = (b, 0) is an
optimal solution. Otherwise continue with the Pricing step.

Pricing Choose anr ∈ N with positive reduced prize (cr > 0).

Unboundedness testIf ar ≤ 0, zLP =∞.

Basis changeOtherwise, find an adjacent primal feasible basisAB(r) that
containsar. SetB toB(r) and return to Optimality Test.

The choice of the entering variablexr is not specified here. There are various
possible pricing rules, one of which is to taker = argmaxj∈Ncj . However, in
practice other rules are used, see [29, 126]. As we have seen in Lemma 4.10
under the nondegenerate assumption the leaving variables is well-defined and
the values of the basic feasible solutions increase in each iteration. As there are
only a finite number of bases the following theorem holds:

Theorem 4.12 Under the assumption that all basic feasible solutions are non-
degenerate, Phase II terminates in a finite number of steps either with an optimal
or an unbounded solution.

If not all basic feasible solutions are nondegenerate, the above theorem still
holds if one additionally uses specific rules to choose the leaving variable, see
[14, 115].

To make the description of the primal simplex algorithm complete, it remains
to specify how we can get (in Phase I) a primal feasible basisAB if the problem
is feasible. To achieve this, one sets up a transformed linear program with addi-
tional penalty variablesxa

i for each row, and changes signs of the rows such that
b ≥ 0.



www.manaraa.com

4.3. Simplex Algorithm 49

za = max{−
m∑

i=1

xa
i : Ax+ Ixa = b, (x, xa) ∈ Rn+m

+ } (LPa)

This linear program is feasible: a basic feasible solution is (xa, x) = (b, 0).
It is also not unbounded asza ≤ 0 and thus has an optimal solution. It can be
solved by the Phase II simplex algorithm above starting withthe basis(b, 0). If
za < 0 the original LP must be infeasible, as it is impossible to setall penalty
variables to zero and preserve feasibility of the original LP. If za = 0 any optimal
solution hasxa = 0 and hence yields a feasible solution to the LP. If all penalty
variables are nonbasic this solution is basic and can be directly used for Phase II.
Otherwise a sequence of degenerate basis changes might yield a basic feasible
solution to LP. Otherwise a case might occur where this is notpossible. But
then it can be shown that certain constraints in LP must be redundant and the
corresponding penalty variables can be dropped. This leadsto a basic feasible
solution again, see [29].

One issue not discussed here is how to adapt the above standard simplex
algorithm to problems ingeneral form, where we have lower and upper bounds
on the variables and on the constraints.

zLP = max cx (LPgen)

b ≤ Ax ≤ d

e ≤ x ≤ f

It is of course possible to apply the above algorithm to such aformulation, but
in practice one uses an algorithm that is tuned for this setting, in which then the
definition of basic, nonbasic and dual variables and complementary slackness
needs to be adapted, see [127, 29]. We will briefly encounter this type of problem
in Section 5.6.4.

In general, an implementation of the simplex method will notstore or cal-
culate the matricesAN . Instead, it will store the current basisAB and cal-
culate the necessary parts ofAN , namelycNA

−1
B for the reduced cost vector

cN = cN − (cNA
−1
B )AN and the columnar = A−1

B ar for the minimum ratio
test. Any simplex algorithm that follows this scheme is called revised simplex
method. In a real implementation of the simplex algorithm one has todeal with
diverse efficiency issues, numerical and stability problems that are out of the
scope of this thesis, again see [29] for details.
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4.4 Dual Simplex Algorithm

The dual simplex algorithm is the dual equivalent to the primal simplex algo-
rithm: Instead of moving from one primal feasible basis to another until it is also
dual feasible, it moves from one dual feasible basis to another until this basis is
also primal feasible. The following theorem corresponds toTheorem 4.10 and
Corollary 4.11 for the dual simplex algorithm.

Theorem 4.13 Let AB be a dual feasible basis withbs < 0. If asj ≥ 0 for
all j ∈ N , then LP is infeasible; otherwise there is an adjacent dual feasible
basisAB(r) , whereB(r) = B ∪ {r} \ {Bs} andr ∈ N satisfiesasr < 0 and
r = argminj∈N{cj/asj : asj < 0}.

The simple proof can be found in [97]. The resulting Phase II of the dual
simplex algorithm is symmetric to the Phase I primal simplexalgorithm.

Dual Simplex Algorithm, Phase II

Initialization Start with a dual feasible basisAB.

Optimality Test If bN > 0 AB is primal feasible, stop.xB = b, xN = 0 is an
optimal solution. Otherwise continue with the Pricing step.

Pricing Choose ans ∈ N with bs < 0.

Infeasibility test If asj ≥ 0 ∀j ∈ N LP is infeasible.

Basis changeOtherwise, letr = argminj∈N{cj/asj : asj < 0}. B ←−

B(r) = B ∪ {r} \ {Bs}, return to Optimality Test.

Often the dual simplex algorithm is preferred over the primal simplex algo-
rithm because its implementations are usually faster. In particular, in a branch-
and-cut setting it is preferable to use the dual simplex, seeSection 4.6.

4.5 Polyhedral Theory

Here we present some connections of linear programming to polyhedral theory.
Polyhedral aspects become particularly important when thegoal is to solve an
integer program by means of linear programming. The problemhere is that the
set of feasible solutions to IP is given implicitly via a linear program. We be-
gin with the necessary definitions, then we present the most important theorems
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without proof and discuss their relevance in the context of practical approaches
to solving large integer programs.

An affine combinationof pointsx1, . . . , xk in Rn is a linear combination
λ1x

1+, . . . ,+λkx
k such that

∑k
i=1 λi = 1.

A conic combinationof points x1, . . . , xk in Rn is a linear combination
λ1x

1+, . . . ,+λkx
k such thatλi ≥ 0 for all i = 1, . . . , k.

A convex combinationof points x1, . . . , xk in Rn is a linear combination
λ1x

1+, . . . ,+λkx
k such that

∑k
i=1 λi = 1 andλi ≥ 0 for all i = 1, . . . , k.

Theaffine hullof a setS ⊆ Rn, denoted by aff(S), is the set of all points that
are affine combinations of (a finite number of) points inS. Similarly, we define
the conic hullcone(S) and theconvex hullconv(S). A set of points isaffinely
independentif and only if none of the points is an affine combination of theother
points.

Definition 4.14 A setP ⊆ Rn is a polytopeif it is the convex hull of finitely
many vectors. A setC ⊆ Rn is a coneif x ∈ C impliesλx ∈ C for all λ ≥ 0.
A coneC is polyhedralif it can be represented as{x ∈ Rn | Ax ≤ 0}. A
polyhedronP ⊆ Rn is the set of points that satisfy a finite number of linear
inequalities; i.e.,P = {x ∈ Rn : Ax ≤ b}.

Any conic hull is a cone. A polyhedron is said to beboundedif it is contained
in a box [−ω, ω]n ∈ Rn; it is rational if it can be represented as above by a
matrixA and vectorb with rational coefficients. We will always assume that all
coefficients are rational. Thedimensiondim(P ) of P is defined to be one less
than the maximum number of affinely independent points inP .

Definition 4.15 An inequalityπx ≤ π0 [or (π, π0)], π ∈ Rn, π0 ∈ R, is called
a valid inequalityfor P if it is satisfied by all points inP . It is calledsupporting
for P if it has a non-empty intersection withP .

In the integer programming setting, valid inequalities areof particular inter-
est.

Definition 4.16 The setF defines afaceof the polyhedronP if F = {x ∈ P :
πx = π0} for some valid inequality(π, π0) of P . If F is a face ofP with
F = {x ∈ P : πx = π0} the valid inequality(π, π0) is said torepresentor
definethe face. The zero-dimensional faces ofP are calledextreme points. F is
a facetofP if F is a face ofP and dim(F ) = dim(P )− 1.

To exemplify these definitions we can give a simple geometricinterpretation
to the second form of Farkas’ Lemma, Corollary 4.6: If (and only if) a vectorb
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is not contained in the coneC = cone{a1, . . . , an} generated by the columns of
matrixA, then there exists a valid inequality forC separating it fromb. More
importantly, the above definitions allow us to state two important theorems in
polyhedral theory concisely:

Theorem 4.17 (Finite Basis Theorem (Minkowski, Weyl), [115]) A convex
cone is polyhedral if and only if it can be represented as a conic hull of finitely
many vectors.
A setP of vectors is a polyhedron if and only ifP can be represented as
P = Q+ C for a polytopeQ and a polyhedral coneC.

Theorem 4.18 (Fundamental Theorem of Linear Programming, [91, 127])
For any linear program LP the following statements hold

• If there is not an optimal solution, then the linear program is either un-
bounded or infeasible.

• If the linear program has an optimal solution, then there is an optimal
extreme point solution to this linear program.

• x∗ ∈ Rn
+ is an extreme point ofP = {x ∈ R | Ax = b, x ≥ 0} if and only

if x∗ is a basic feasible solution of the systemAx = b, x ≥ 0.

The finite basis theorem states that there are two equivalentviews of a poly-
hedronP : It can be seen as the intersection of half-spaces as expressed by the
inequality systemAx ≤ b or it can be seen as the sum of a polytope and a
polyhedral cone. Both the polytope and the cone are generated via convex/conic
combinations by a finite set of points, thereforeP = conv({x1, . . . , xk}) +
cone({xk+1, . . . , xk′

}) and one also says thatP is finitely generatedby the sets
{x1, . . . , xk} and{xk+1, . . . , xk′

}.

The fundamental theorem of linear programming, the proof ofwhich does
not necessarily rely on the simplex method, identifies the extreme points of the
polyhedron defined by the LP and the basic feasible solutionsproduced by the
simplex method.

The above theorems give a theoretical foundation to LP-based approaches
for solving integer programs. Assume there are a finite number of solutionsS
to a given integer linear program. Then conv(S) can be described by a finite
number of linear inequalities by the finite basis theorem. The maximum of a
linear function over conv(S) is attained in an extreme points of conv(S), by
the fundamental theorem, which impliess ∈ S. Therefore, if the description of
conv(S) by linear inequalities is given, the solution of the integerlinear program
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can be obtained from the solution of a linear program. The assumption thatS
is finite can be dropped, also without this assumption conv(S) is a polyhedron.
To sum up, the above theorems show that given a polyhedronP = {x ∈ Rn

+ :
Ax ≤ b}, S = Zn∩P the integer linear programming problemmax{cx, x ∈ S}
can be solved by solving the problemmax{cx : x ∈ conv(S)} and this can be
written and solved as a linear program if the description of conv(S) is available.

From a theoretical point of view, the above insights raise the question which
inequalities in a given formulation are necessary to describe a polyhedron. As it
turns out, exactly the inequalities that represent facets are necessary, see [97].

Lemma 4.19 For each facetF of P , one of the inequalities representingF is
necessary in the description ofP .

Lemma 4.20 Every inequalityarx ≤ b in the formulation, that represents a face
of dimension less than dim(P )− 1 is irrelevant to the description ofP .

For full-dimensional polyhedra these lemmata lead to a nicecharacterization
of facets:

Theorem 4.21 ([97]) A full-dimensional polyhedronP has a unique (to within
scalar multiplication) minimal representation by a finite set of linear inequalities.
In particular, for each facetFi of P there is an inequalityaix ≤ bi (unique to
within scalar multiplication) representingFi andP = {x ∈ Rn : aix ≤ bi, 1 ≤
i ≤ t}.

For polyhedra of lower dimension there are similar statements, see [97, 115].

4.6 Branch-and-Cut

In practice, the complete inequality description of conv(S) typically has expo-
nential size and is almost never available except for a few well-studied problems.
On the other hand, this critique seems overly pessimistic asit is not necessary to
have the complete description: For an optimal solutionxopt with respect to a fixed
objective function only a small part of the constraintsC will be binding, in the
sense thatxopt lies only on a few of the hyperplanes defined byC. For this reason,
xopt could also have been obtained from a formulation in which oneleaves out
all of the non-binding constraints as long as they are not violated. This motivates
an approach in which we use valid inequalities to iteratively strengthen a given
linear programming relaxation with the aim of finding an (optimal) solution that
violates none of the constraints including those that were left out.
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More formally, such an approach starts with an integer linear program and
solves its linear programming relaxation LP0, obtaining a solutionx0 with ob-
jective valuez0

LP. As already discussed in the introduction, ifx0 is feasible for IP
it is an optimal solution to IP. Otherwise,zIP < z0

LP, x
0 /∈ conv(S) and there is a

valid inequality(π, π0) that separatesx0 from conv(S). Assume that we get such
a valid inequality from aseparation oracleand add it to the linear programming
formulation to obtain a new relaxation LP1. Solutionx0 is no longer feasible for
LP1, Therefore, by resolving the linear program we get a solution x1 6= x0 and
we havez1

LP ≤ z0
LP. By iterating this approach we get a sequence of solutions

and objective values that hopefully converges to an integeroptimal solution. As a
given optimal solution remains dual feasible after a valid inequality (also called a
cut in this context) has been added it is usually advantageous touse the dual sim-
plex algorithm to reoptimize. This approach is calledcutting-plane algorithm.
In theory, it can be shown that there are general purpose separation algorithms
that always find violated valid inequalities as long as the iterative solutionxi is
fractional, such that the above cutting-plane algorithm isfinite. The separation
algorithms were developed by Gomory, Lovász, and Schrijver [64, 65, 115].

In practice, pure cutting plane algorithms are rarely used.The complexity
of this approach is hidden in the complexity of the separation oracle. This is
indeed problematic, as finding a separating hyperplane can be as hard as solv-
ing the whole problem. A famous theorem by Grötschel, Lovász and Schrijver
[68] says that under mild technical assumptions on the description of the poly-
hedron there is a polynomial time reduction from the optimization problem of
finding an optimal solution to an IP to the separation problemof finding a valid
inequality (π, π0) that cuts off a given infeasible solutionx′ from conv(S). Sym-
metrically, there is a polynomial time reduction from the separation problem to
the optimization problem.

Still, it is possible that for a given solutioñxi to LPi the separation problem is
easy. In particular, there can be families of valid inequalities for which separation
is a polynomial time algorithm or for which there are at leastefficient heuristics
that often find a separating hyperplane, when there is one. Inthis scenario, it
often pays off to combine the available non-exact separation algorithms with a
branch-and-bound approach as follows.

Run the cutting-plane algorithm as long as no integral feasible solution has
been found and as long as the non-exact separation algorithmfinds separating
hyperplanes. Thenbranch, i.e., partition (a fixed subset of) the set of optimal
integral feasible solutions into two parts, by imposing a condition that explicitly
excludes the current infeasible solutionx̃i and solve recursively the two sub-
problems, using the solutions obtained from the cutting-plane steps as bounds.
A simple way to achieve a partition of the solution space is totake a fractional
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variablex̃i
j ∈ x̃

i and imposexj ≤ ⌊x̃i
j⌋ for the first subproblem andxj ≥ ⌈x̃i

j⌉
for the second subproblem.

As in classical branch and bound algorithms we can discard a subproblem
if the objective value of the relaxation is smaller than a known integral feasible
solution. Put simply, a branch-and-cut algorithm is nothing but a classical branch
and bound algorithm, in which a cutting plane algorithm is used in every node of
the branch and bound tree to strengthen the bound.

As for the cutting planes used, it is often easy to find some family of sep-
arating hyperplanes, but it is not always clear, how effective these are. Ideally,
we would like to have only facets of conv(S) as separating hyperplanes. Unfor-
tunately, it is often very difficult to find these or to prove that some separating
hyperplane is indeed facet-defining. For the case of the vehicle routing prob-
lem, a variant of which we will study in the next chapter, eventhe dimension of
the vehicle-routing-polytope is unknown, which makes it difficult to prove that a
given hyperplane is facet-defining. One reason is that the most prominent proof
strategy is to exhibit dim(conv(S)) many affinely independent points inS that
lie on the hyperplane. Moreover, the associated separationproblem could be too
difficult to solve. In this context it makes more sense to haverelative measures
for the quality of valid inequalities (and trade them off against the difficulty of
finding them).

Definition 4.22 If πx ≤ π0 and µx ≤ µ0 are two valid inequalities forP ,
(π, π0) dominates(µ, µ0) if there existsu > 0 such thatπ ≥ uµ andπ0 ≤ uµ0,
and(π, π0) 6= (uµ, uµ0).

Definition 4.23 A valid inequality(π, π0) is redundantin the description ofP , if
there existk ≥ 1 valid inequalities(πi, πi

0) and weightsui > 0, for i = 1, . . . , k

such that(
∑k

i=1 uiπ
i,

∑k
i=1 uiπ0) dominates(π, π0).

Sometimes it is already remarkable that the inequalities ofa family are sup-
porting.

This was only a superficial description of branch-and-cut algorithms. There
are several important aspects that need to be considered in an implementation:
The generated cuts can be globally or only locally valid, i.e., only in the subtree
of the current node in the branch and cut tree. The cuts are usually managed incut
pools. The branch and cut tree needs to be stored in an efficient data-structure that
also depends on the policy of selecting the next node to expand. Connected to this
is the choice of thebranching strategythat selects how to branch in a given node.
It is also not always clear when one should branch: It can happen that the cutting
plane algorithm keeps finding violated cuts (and increasingthe size of the linear
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program to solve) without significant improvement in the bound. For this reason,
one needs to decide when to interrupt the cutting plane algorithm and branch.
In connection with branch-and-cut alsopre- and postprocessing strategiesare
discussed, because in practical applications they are equally important for the
success of an implementation.

A complete description of all these components is out of the scope of this
thesis. Some of these aspects are discussed in [1] and also in[82], where the
authors explain how they implemented the SYMPHONY branch-and-cut frame-
work, which we also used for our implementation. In [2] Aardal and van Hoesel
discuss the underlying theory and exemplary families of valid inequalities for ba-
sic combinatorial optimization problems in more detail. Finally, [21] and [104]
provide a wealth of references for branch-and-cut.

4.7 IP Column Generation

In the last section we reviewed the branch-and-cut approach. The basic idea of
this technique is to leave rows out of the LP-relaxation, because there are too
many of them to handle them efficiently and most of them will not be binding
for the given objective function. The column generation approach applies the
same idea to the columns (variables) of the formulation: Initially most of the
columns are left out of the LP-relaxation because there are too many of them to
handle them efficiently and most of them will be non-basic in an optimal solution
anyway. From this short description it is clear that column generation can be the
method of choice when there are many variables in the formulation. Following
[13] there can be several reasons why such a formulation arises:

• A compact formulation of the problem may have a weak LP-relaxation.
This relaxation can be tightened by a reformulation that involves a huge
number of variables.

• A compact formulation of the problem may have a symmetric structure
that causes branch-and-bound to perform poorly. A reformulation with a
huge number of variables can eliminate the symmetry.

• Column generation provides a decomposition into master andsubproblems
(as we will see in the following). The subproblems can have a natural in-
terpretation in the problem setting which allows a straight-forward incor-
poration of additional constraints into these subproblems.

• A formulation with a huge number of variables may be the only known
choice.
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One class of problems that is particularly well-suited for column generation
consists of problems where the variable set can be partitioned into setsx1 ∈
Zn1

+ , . . . , xK ∈ Z
nK

+ such that any feasible solution has to fulfill two types of
constraints. First, constraints that are defined on each of the variable sets alone,
i.e., constraints of the formxk ∈ Xk = {x ∈ Z

nk

+ : Dkx ≤ dk} for all
k = 1 . . . ,K that are independent of each other. For example, in a vehicle
routing setting this could be the constraints for the feasibility of a route of a
single vehicle. Second, coupling constraints that involveall variable sets. In
a vehicle routing setting this could be the constraints thatdefine when a set of
routes constitutes a feasible solution. Such a problem can be written as

zIP = max

{
K∑

k=1

ckxk :

K∑

k=1

Akxk = b, xk ∈ Xk, k = 1, . . . ,K

}

(IPcompact)

Assuming that the setsXk are bounded, such a problem can be automatically
transformed into an Integer Linear Program with many variables by theDanzig-
Wolfe reformulation:

As the setsXk are bounded, they contain a finite number of points{xk,t}Tk

t=1

and can thus be represented as

{

xk ∈ Rnk : xk =

Tk∑

t=1

λk,tx
k,t,

Tk∑

t=1

λk,t = 1, λk,t ∈ {0, 1}, t = 1, . . . , Tk

}

(4.7.1)
Now we simply substitute this equation forxk and obtain theIP Master problem:

zIP = max

K∑

k=1

Tk∑

t=1

(ckxk,t)λk,t (IPM)

K∑

k=1

Tk∑

t=1

(Akxk,t)λk,t = b (4.7.2)

Tk∑

t=1

λk,t = 1 for k = 1, . . . ,K (4.7.3)

λk,t ∈ {0, 1}, for t = 1, . . . , Tk andk = 1, . . . ,K (4.7.4)

The column generation method applies to linear programs, sowe first con-
sider the linear relaxation of the above integer program, also called thelinear
programming master problemLPM with objective valuezLPM. Its formulation
is identical to the integer program except that one demandsλk,t ≥ 0 instead of
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λk,t ∈ {0, 1} (λk,t ≤ 1 is redundant). The idea of column generation is now
to mimic the behavior of the (revised) primal simplex algorithm—but instead
of explicitly calculating the reduced prizes (pricing) of all nonbasic variables
one solves an optimization problem (thepricing problem) and thereby implicitly
prices the non-basic variables. To be more precise, the revised simplex algo-
rithm must be adapted in the following way to implement a column generation
approach:

Initially, one selects a set of columns (at least one for eachk) such that the
Restricted Linear Programming Master(RLPM) problem, i.e., the LP relaxation
that comprises these columns only is feasible. In a typical application this is easy
to obtain or can be enforced by adding columns with highly unfavorable cost that
are infeasible to the subproblems but guarantee feasibility for the master.

In the next steps the simplex algorithm is mimicked by alternating LP solving
and pricing steps. In stepi the current RLPM is solved using the primal simplex
algorithm to obtain a primal optimal solution vectorx̂i and a dual optimal solu-
tion vectoru = (ub, uK), whereub represents the dual values of the constraints
of type (4.7.2) anduK refers to (4.7.3). For each subproblemk the dual vectoru
defines reduced pricesckx − ub(Akx) − uK

k for eachx ∈ Xk (c.f. (4.3.3)). By
solving the following pricing problem

ckmax = max
{
(ck − ubAk)x − uK

k : x ∈ Xk
}

(4.7.5)

one can mimic the simplex algorithm by adding the column defined by the max-
imum in (4.7.5) ifckmax > 0. If ckmax ≤ 0 for all 1 ≤ k ≤ K the current solution
x̂i to RLMP is optimal for the whole problem and the algorithm terminates. A
column generation algorithm iterates the pricing and resolving steps until the
above termination criterion is met and an optimal solution to the linear relaxation
is found. The correctness of this procedure follows from thecorrectness of the
simplex algorithm.

Historically, column generation was developed for linear programs not all
variables of which fit into main memory. Today, it is almost always used for
integer linear programs in combination with a branch and bound approach, which
together is then calledIP Column Generationor branch-and-price.

One important reason for using column generation for Integer Programs is
that the linear relaxation LPM is often stronger than a simple linear relaxation of
IPcompact: It follows directly from the definition of Danzig Wolfe decomposition
that the linear programming master attains the value

zLPM = max

{
K∑

k=1

ckxk :
∑

Akxk = b, xk ∈ conv(Xk) for k = 1, . . . ,K

}

,

(4.7.6)
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Figure 4.7.1: Illustration of different relaxations of an Integer LinearProgram
with masterAx ≤ b and one single subproblemDx ≤ d. The blue points
are feasible to the integer linear program. The yellow and the green area are
the solution space of the LP relaxation. The green and the redarea are the
convex hull of the feasible points forDx ≤ d and therefore the solution space of
the subproblem. The green area is solution space of the linear relaxation of the
master problem after a Danzig-Wolfe transformation or a Lagrangian Relaxation
ofDx ≤ d, adapted from [6].

which must be greater or equal than the linear relaxation. InFigure 4.7.1 we see a
simple example where the linear programming master can achieve tighter bounds
than the linear relaxation. The valuezLPM is exactly the value that one could have
obtained with a branch-and-cut approach that has exact separation routines for
the subproblems. This means that for a given solution it checksx ∈ Xk for k =
1, . . . ,K and adds a separating hyperplane to the formulation if one ofthe tests
fails. Such an approach is called thepartial convexification relaxation. Finally,
also a Lagrangian relaxation (not discussed here), in whichthe master constraints
are dualized and the subproblems are solved separately, attains exactly the value
zLPM. The equality of the objective values of these three approaches does not
mean that they are equivalent. Most importantly, during thesolution process the
column generation approach has a primal feasible solution available, which holds
neither for the branch-and-cut approach nor for the Lagrangian Relaxation. Also
the separation routine of the branch-and-cut problem is in general a different
algorithmic problem than the subproblems of the column generation approach.
Finally, it follows directly from the finiteness of the simplex algorithm with the
right selection rules that column generation terminates after a finite number of
iterations, which is not always the case for the partial convexification approach.

Similar to the branch-and-cut section, in this section we have only seen a
short review of column generation. There are numerous details and implemen-
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tation issues that have been glossed over, we mention a few ofthem: Typically
ordinary branching schemes that branch on single variablesperform very poorly
in a column generation setting so thatspecial branching schemesare necessary,
and the same holds for primal heuristics. Also the column selection is non-trivial.
There is a trade-off between pricing in many columns at once in order to de-
crease the number of simplex iterations at the cost of additional computations
in the pricers and a bigger formulation of the master. It seems to not even be
settled, what the most effective pricing rule is, i.e., which column among those
with negative cost should be included into the next RLPM formulation? A typi-
cal problem of column generation algorithms are oscillating dual values. Several
schemes exist to remedy this problem. Finally, pre- and postprocessing plays an
important role in column generation algorithms and also in the literature. For
information on these aspects and more see [13, 126, 45, 46, 117].
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Chapter 5

Optimizing a Hub and Spoke
Railway System

Loaded like a freight train.
Flyin’ like an aeroplane.
Feelin’ like a space brain.
One more time tonight.
(Guns N’ Roses - Nighttrain)

5.1 Introduction

In the present chapter everything revolves around a particular freight train sys-
tem: The Cargo-Express service [112] of Swiss federal railways SBB Cargo Ltd.,
which provides fast overnight transportation of goods. TheCargo-Express net-
work is operated as a (multi-) hub spoke system, the hubs being the shunting-
yards.

The whole system is complex enough to pose a multitude of challenging op-
timization problems, a few of which we will study here. The main problem we
tackle is to route the freight trains through the network andto find a cheap sched-
ule for them that respects constraints given by the real-world problem. For the
cost of the schedule, we consider the cost of operating the engines and the cost
of the traveled distance.

The outline of this chapter is as follows: First we discuss how the Cargo-
Express service works in detail, then we present three models: First a naive ILP
approach; then an approach that decomposes the routing and scheduling problem

61
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and uses the branch-and-cut method; finally we describe an alternative method
that is based on column generation, considers more constraints and jointly opti-
mizes the routing and the scheduling problem. After having discussed the models
and their application to the real world problem we discuss some algorithmic ques-
tions of more theoretical flavor which are related to the shunting and scheduling
aspects. At the end of the chapter we present experimental results and present
related work. (Although we usually give the related work andthe summary of
results in the introduction of a chapter, it is more natural here to postpone it,
because a big part of the chapter is concerned with building the models which
constitute a prerequisite for the understanding of relatedwork). It is clear that
the principal results of this section also apply to any otherhub-spoke system
that is operated similarly. However, in this chapter we willstick closely to the
SBB Cargo Express system: First, it is a motivating running example, second
and more importantly, we have had access to all the necessarydata to run our
optimization codes on it and could discuss the quality of oursolutions with the
SBB Cargo planners.

5.2 Problem Description

We explain how our reference hub-spoke system, the SBB CargoExpress Service
works. We describe the way of operation from the point of viewof a customer
who wants to transport some containers or a set of freight cars from a source
station in Switzerland to a destination station somewhere else in Switzerland.
More precisely, the Cargo Express System is meant for customers who need such
transports regularly: A typical customer wants to have a fixed amount of goods
transported from station A to station B every week-day, or every Monday in the
next half year. The customer has to announce in advance her fixed demand for
a given period. In general, this period corresponds to the lifetime of the fixed
schedule that is currently generated once every year takinginto consideration the
announced demands. The schedule is constructed by hand and slightly adapted
in a “trial-period” after its implementation. If the demands change over a year
or new customers want to be served, the SBB Cargo team generally succeeds in
adapting the existing schedule to the new situation. This isalso done by hand.

The transport itself works as follows. In the evening, the customer deposits
her cars at the requested station. She can do this until a negotiated departure
time that can also vary among different customers for the same station. After
that time the cars are picked up by a freight train which transports them together
with other cars to one of the shunting yards (to which we usually refer as hubs).
Along its route a freight train picks up cars at different stations. The process of
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picking up the cars incurs a non negligible amount of time, the couple time at
the stations, which is mainly needed for a brake test and is therefore relatively
independent of the number of picked up cars. After it has arrived at a hub, a train
is decoupled. The shunting is performed on humps. The cars ofthe customer are
coupled to an outgoing train that departs roughly after all its cars have arrived
from incoming trains and have been coupled to the outgoing train. This outgoing
train then delivers the cars at the destination. It can also happen that the train goes
to another hub where shunting takes place again. Trains thatcommute between
hubs neither deliver nor pick up cars. A last possibility is that the cars of a
customer are transported by a dedicated train directly to their destination without
going through a hub. In one night each engine can perform exactly one of these
tasks, i.e., going to and from a hub once including potentially a few rides between
hubs, or transporting a shipment directly to its destination.

We next discuss some subtleties of the problem. The capacityof the shunting
yards is limited: Only a limited number of cars can be stored there and only a
limited number of shunting operations can be performed in a given time period.
The trains themselves have a limited capacity. The network may containswitch-
backs, i.e., a crossing or a furcation, which have the effect that the time to go
through this switchback to a given destination depends on the direction a train
comes from. Furthermore, there might be stations at which two or three trains
are decoupled and coupled. Thus, such a station acts as a sortof shunting yard
without hump, but in general only very few trains are shuntedthere. There is
also the issue of track-availability, although this is not crucial during the night.
Finally, also the engine drivers have to be assigned to the trains and transported
to and from the trains in a way that is subject to various regulations.

In 2005 and 2006 the system was operated as a single-hub system: Two close-
by shunting yards Däniken and Olten were used as a single hub. Starting from
2007 the system will be operated as a multi-hub system with more than one
hub. One reason for the change was the insufficient hub capacity at Däniken and
Olten. Also the bigger Cargo-Rail system that does not guarantee delivery in one
night comprises several hubs and works similarly on a largerscale. The models
developed in this chapter are therefore also applicable to this system (except for
Model 1 below, which assumes a single hub).

The primary goal of our optimization efforts has been to makethe system
cheaper. The main costs are the costs of operating the engines and the costs of
driving the necessary routes on the tracks. From the above description it is clear
that it can be important to minimize the necessary hub-capacity.
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5.3 Models

We present a sequence of models that mirror our attempts to solve the optimiza-
tion problem sketched above.

5.3.1 Scope of the Models

It should be clear from the above description that a completemodel of the SBB
Cargo system is very difficult to formulate. For this reason,we decided to ignore
some of the seemingly secondary aspects in our models: We do not consider
the problem of engine driver assignment. We do not consider the problem of
switchbacks and furcations. It is rather straight-forwardhowever to construct
gadgets that transform the network in such a way that switchback and furcations
are taken care of at the cost of an additional blow-up of the network. For the
models we will ignore the exact sequence of shunting operations at the hub and
then have closer look at these in Section 5.7.

In the next section we discuss the aspects of the problem thatwe model. The
three mathematical models that we present afterwards will partly only consider a
subset of these aspects.

5.3.2 Common Notation

We assume that we are given a(railway) networkN = (V,E, ℓ, c). The nodes
represent stations, hubs and junctions, the edges represent the tracks connecting
those;ℓ : E → R+ is the length function on the edges andc : E → R+ is the
cost function on the edges. ByH ⊂ V we denote the set of hubs in the network.
To simplify the presentation we will writec(e) mostly asce. In the following we
give a list of parameters and features that we consider in ourmodels.

• The setS of shipmentsdefines the cars to be transported. Associated with
a shipments ∈ S are the following properties:

– source(s) thesource station,

– dest(s) thedestination station,

– departS(s) theearliest possible departure timeat station source(s),

– arriveS(s) the latest possible arrival timeat station dest(s),

– vol(s) thevolume, i.e., the number of cars ofs.
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• The maximum train loadLmax bounds the total volume that any engine
can take.

• Theshunting time at the hubT h
shunt is the minimum additional time that a

departing train has to wait due to shunting after its last shipment has arrived
at hubh ∈ H . This time is assumed to be independent of the number and
volume of the shipments.

• The couple time at the stationsT s
couple is the additional time incurred by

taking any set of shipments at a station. This time is independent of the
number and volume of the shipments taken.

• Thehub capacitycaph for each hubh ∈ H specifies how many cars can at
most stay in the hub at any given moment in time.

• The engine costCenginerepresents the cost of operating one engine.

• The average speed̄v is used to calculate the time it takes the trains to travel
on the tracks.

Sometimes it is more useful to represent the source, destination and volume
information of the shipments in an(n× n) supply-and-demandmatrixM , such
thatM(source(s), dest(s)) = vol(s) for all s ∈ S.

One part of a solution is arouteof an engine through the network. By route
we mean a graph theoretic walk, which can in particular contain repeated edges
and nodes. Some of our solution approaches will restrict thewalks to (elemen-
tary) paths. This restriction is not admissible for our problem at hand, however
it can be circumvented in our solution approaches by a transformation of the
original sparse network to a network on the complete graph. Another part of a
solution is a specification of arrival and departure times for each of the nodes on
the routes. We now define more formally the most general version of the railway
problem that we want to study.

Definition 5.1 (General Train Optimization Problem (GTOP)) Given a rail-
way networkN = (V,E, ℓ, c), a set of hubsH ⊂ V a set of shipmentsS and
the parametersLmax, T h

shunt, T
s
couple, caph, Cengine, v̄ as defined above, find a fea-

sible solution of minimum cost. A feasible solution consists of the sizek of the
necessary train fleet and time consistent routes fork engines with time consistent
arrival and departure times at the stations and hubs such that all shipments are
transported from their source to their destination respecting the time windows
and the other constraints given by the above parameters.
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GTOP is obviously strongly NP-hard as it contains problems like the travel-
ing salesman, bin-packing, and diverse scheduling problems.

We discuss three models. The first one, Model 0, is a more or less straight-
forward translation of the problem into an integer linear program. In Model 1 the
problem is decomposed and branch-and-cut is applied. We developed this model
at a time, when the SBB Cargo Express System had a single hub, so that it only
applies to single-hub systems. Model 2 is a column generation approach for the
multi-hub case.

The railway network for the SBB Cargo Express Service has 651nodes and
1488 edges. Around 200 shipments are transported every day.In a preprocessing
phase we could condense the network to a network with 121 nodes and 332 edges.

5.4 Model 0

From a practical point of view, when dealing with NP-hard problems, it can be a
good idea to try to formulate the whole problem as an ILP and tosolve this on a
realistic instance to get an idea of how “difficult”, in a fuzzy sense, the problem
is. Therefore, we experimented with different ILP formulations. As one could
expect from the number of constraints mentioned, the formulations get rather
lengthy. In Appendix A.2 we present one that models all of GTOPs constraints
except for the hub capacity. We give the model in the ILOG OPL modeling
language [71] with comments. To get a rough idea of this modelwe consider the
sets of variables only:

// train uses arc on its way to some hub
var bool travelsForth[Trains,Arcs];
// train uses arc on its way from some hub
var bool travelsBack[Trains,Arcs];
// train goes between two hubs
var bool travelsBetween[Trains, Hubs, Hubs];
// train starts at node
var bool starts[Trains,Nodes];
// train ends at node
var bool ends[Trains,Nodes];

// time at which a train arrives at a station on its way to some hub
var departTimes arrivesForth[Trains, Nodes];
// time at which a train arrives at a station on its way from some hub
var arriveTimes arrivesBack[Trains, Nodes];
// time at which train z starts a hub hub ride
var betweenTimes startsBetween[Trains];

// direct paths from Shipments
var bool direct[Trains, Shipments];

// second train depends on first for its front/back journey through h
var bool depFB[Trains,Trains, Hubs];
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// second train depends on first for Hub Hub journey through h
var bool depFH[Trains,Trains, Hubs];
// second train depends on first for hub back journey through h
var bool depHB[Trains,Trains, Hubs];

// train takes shipment and goes to hub
var bool takesForth[Trains, Shipments, Hubs];
// train takes shipment from hub
var bool takesBack[Trains, Shipments, Hubs];
// train takes shipment between hubs
var bool takesBetween[Trains, Shipments, Hubs, Hubs];

In [122] Toth and Vigo discuss different formulations for the related but simpler
vehicle routing problem (VRP). In terms of their classification the first sets of
variablestravelsForth[] toends can be seen as the variable set of athree-
index vehicle flow formulationfor the VRP. This model needs to be augmented
by variables for the time windowsdepartTimes to betweenTimes and by
a variabledirect that models direct trains for shipments (that do not go via
a hub). Until this point the model is a relatively “standard”model. The main
complicating effect, which is not covered by standard formulations, comes from
the hubs: An outgoing train can only depart after its incoming shipments have
arrived. This creates dependencies between incoming and outgoing trains that
we model by thedep variables. For these variables to be computable we also
need to know which train takes which shipments (note that this is not implied by
thetravels variables as many trains can pass a station and pick up shipments
there. We first ran the model on the sparse network which entails the elementari-
ness of all routes as an unwanted side effect. It would have been possible to find
also non-elementary routes by a transformation similar to the one given in Sec-
tion 5.5.3. By further complicating the model it would have also been possible to
model the hub capacity constraints. However, we performed some computational
experiments with this model, which made it seem unlikely that a model of this
type could ever yield a result for our real instances. We created two toy instances
on a graph with 14 nodes and 24 edges, one with four and one with11 shipments.
On Machine B, see A.1, the small instance needed a quarter of an hour to solve.
We ran the 11 shipments instance for more than 40 hours and didnot even get a
feasible solution.

5.5 Model 1

The computational experience with Model 0 and similar models motivated us to
decompose GTOP into a routing part and a scheduling part, each of which should
be solvable in reasonable time. Moreover, Model 1 is formulated for a single hub
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because at the time when it was developed the SBB Cargo Express network had
a single hub only. In the following we explain the decomposition.

5.5.1 Routing

In the routing part we search for short routes from the stations to the hub and vice
versa but do not compute the arrival and departure times of the routes. We treat
the transport from the stations to the hub and the transport from the hub to the
stations separately. Obviously, these two problems are symmetric, therefore it is
sufficient to analyze only one direction. Here we mainly consider the transport
from the stations to the hub. The decomposition entails thatthe time windows
are ignored in the selection of routes. For this reason, we have to guarantee in a
different way that the routes do not get too long (even if alsothe load limit and the
objective function tend to keep routes short). To this end, we introduce a global
maximum trip distanceDmax that limits the length of all routes. The model
implies that we do not use the whole information of the supplyand demand
matrixM but rather the row and column totals (depending on the direction) in
this matrix. This is expressed by a supply (demand) value that is associated with
each node. This value is the volume (in freight cars) that is to be transported from
the station to the hub, or vice versa. From this simplification alone, the number
of shipments in the instance drops considerably. The following definition gives a
formalization of the problem.

Definition 5.2 (Train Routing Problem with fixed train fleet (T RP)) Assume
we are given a networkNTRP = (V,E, ℓ, c), a specified single hub nodêh ∈ V ,
a set of shipmentsS, a maximum train loadLmax, a maximum trip distance
Dmax, the average speed̄v, the couple timeT s

couple, and the fleet sizeK. A
feasible solutionσ = (Rx, Ry, ρx, ρy) consists of two sets ofK routeseach,
the X-routesRx = {rx

1 , . . . , r
x
K} and theY -routesRy = {ry

1 , . . . , r
y
K},

i.e. graph-theoretic walks in the network having one endpoint in ĥ, and an
association of each shipments ∈ S in the network with one routeρx(s) in Rx

and one routeρy(s) in Ry such that the following properties hold:

1. No route is longer thanDmax. Thelengthof anX- routerx is defined as
the length of the route plus|{v ∈ V | ρx(v) = r}| · T s

couple· v̄. The length
of aY route is defined accordingly.

2. No train is loaded more thanLmax. Theloadof a train for anX-routerx

is
∑

s:ρx(s)=r vol(s), and accordingly for aY -route.

3. For each shipments routeρx(s) visits source(s).
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4. For each shipments routeρy(s) visits dest(s).

The cost of a solution is the sum of the lengths of the routes. The train routing
problem is to find a minimum cost solution.

The restriction to a fixed fleet sizeK is not very limiting. In practice, one
wants to minimize a weighted sum of the number of used trains and the traveled
distance. Reasonable values for the number of used trains are usually in a very
small interval so that the optimization can be done for all ofthese values. Finally,
it is also possible to choose different fleet sizes for theX- and theY -routes.

5.5.2 Scheduling

For the scheduling problem we assume that we are already given a solution
(Rx, Ry, ρx, ρy) to TRP. For the routes inRx andRy it remains to specify the
exact arrival and departure times at the station that respect the time windows, the
hub shunting time, and also keep the hub-capacity low. In fact, we choose the
hub capacity as the objective function. A complete schedulecontains the depar-
ture and arrival times of each train at each station. However, it is not necessary to
specify a schedule in such detail: The arrival time and departure time windows
are one-sided in the sense that there is a priori no latest departure time or an ear-
liest arrival time for the shipments; for that reason it doesnot make sense for a
train to slow down on the tracks or to wait before a station until it is “possible”
to enter it. Therefore, we can completely specify a scheduleby giving the arrival
and departure times of the trains at the hub and assume w.l.o.g. that the engines
arrive there and start from there traveling the route in a fastest possible way, i.e.,
going at speed̄v and only waiting the required couple timeT s

coupleat the stations
where they pick-up or deliver shipments.

Definition 5.3 (Train Shunting and Scheduling Problem (TSSP)) Let a solu-
tion (Rx, Ry, ρx, ρy) to TRP for a setS of shipments be given. A feasible solu-
tion to TSSP defines for eachrx ∈ Rx an arrival time at the hub arrivêh(rx) and
for eachry ∈ Ry a departure time at the hub depĥ(ry) such that

• the (inferred) arrival and departure times at the stations respect the time
windows.

• an outgoing trainτ only departs after all incoming trains carrying cars
for τ have arrived and have been shunted:

∀rx ∈ Rx ∀ry ∈ Ry ∀s ∈ S :

ρx(s) = rx ∧ ρy(s) = ry ⇒ dep̂h(ry) ≥ arriveĥ(rx) + T ĥ
shunt (5.5.1)
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The cost of a solutionσ equals the maximum number of cars that are in the hub
at the same time:

cost(σ) = max
t∈EVENTS

∑

s:arrive
ĥ
(ρx(s))≤t∧ dep̂

h
(ρy(s))≥t

vol(s) . (5.5.2)

where EVENTS= {t′ ∈ R | ∃rx ∈ Rx : arriveĥ(rx) = t′ ∨ ∃ry ∈ Ry :
dep̂h(ry) = t′}. An optimal solution to TSSP is one with minimum cost.

We will consider the theoretical and practical aspects of this scheduling prob-
lem later in Section 5.7. In the following we focus on a branchand cut solution
approach to the TRP.

To sum up, the above decomposition of GTOP into the sequential solution
of TRP and TSSP allowed us to produce solutions to a real worldinstance with
one hub as documented in the experimental Section 5.8. Observe also that the
sequential approach might find no feasible solution for GTOPeven if there is
one, because the optimal solution to TRP can be an infeasibleinstance to TSSP.
We also address this problem in the experimental section.

The TRP can also be seen as a problem in its own right: It is a sensible
variation of a vehicle routing type problem. In the next section we will illuminate
the connections to classical vehicle routing problems.

5.5.3 Branch and Cut Approach

In general, there are many different possibilities to tackle a problem like the train
routing problem, even after one has decided to use an exact approach like branch
and cut. Out of these possibilities we could only evaluate a small subset. Natural
candidates are those based on formulations that proved successful for related
vehicle routing problems, i.e.,vehicle flowmodels with the classical two- or three
index formulations,commodity flowmodels orset partitionmodels, see [122]
for an excellent overview. After some preliminary experiments with such ILP
models for TRP we decided to use a two-index formulation. In particular, we
based our implementation on an existing VRP package for the vehicle routing
problem that is based on the two index formulation. We extended it such that
it can solve our problem. In the following we discuss the distance constrained
capacitated vehicle routing problem and its connection to TRP.

Definition 5.4 (Distance Constrained Vehicle Routing Problem (DCVRP))
The input consists of a networkNDCVRP = (V,E, c, ℓ), a specified hub node
ĥ ∈ V , furthermore demandsdi, i ∈ V on the nodes, a maximum load (or
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capacity)LDCVRP
max , and a maximum distanceDDCVRP

max . All edges are present in the
networkN .

FindK elementary circuits with minimum total cost, such that the following
properties hold.

1. Each circuit visits the hub nodêh.

2. Each customer node is visited by exactly one circuit.

3. The sum of the demands on each circuit does not exceed the allowed
loadLDCVRP

max .

4. The length of each circuit does not exceedDDCVRP
max .

The cost of a path equals the sum of the edge costs.

DCVRP ILP-Formulation

The two index formulation of the DCVRP uses Boolean variablesxe to indicate
if a given edgee ∈ E is chosen. We give it for complete undirected graphs,
following [123] and explain it below.

DCVRP: min
∑

e∈E

cexe

s.t.
∑

e={i,j}∈E

xe = 2 ∀i ∈ V \ {ĥ} (5.5.3a)

∑

e={ĥ,j}∈E

xe = 2K (5.5.3b)

∑

e={i,j}∈E,i∈Q,j /∈Q

xe ≥ 2r(Q) ∀Q ⊂ V \ {ĥ}, Q 6= ∅ (5.5.3c)

xe ∈ {0, 1} ∀e ∈ E (5.5.3d)

Equations (5.5.3a) enforce that each node except for the hubhas degree two,
(5.5.3b) enforces that the hub has degree2K.

Equations (5.5.3c), thecapacity cut constraints, are the most interesting con-
straints. They play a similar role for the VRP as the subtour elimination con-
straints do for the TSP [87]. The left hand side, evaluated ata solution vector,
gives the number of edges in that solution that cross the cut[Q, V \ Q]. Note
that every vehicle that serves customers inQ contributes two to the number of
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edges of the cut. The right hand side should therefore represent the minimum
number of necessary crossings of vehicles due to the connectivity requirement,
capacity reasons, and the distance constraints. The valuer(Q) can be understood
as the maximum of two values:d(Q), which accounts for the maximum distance
constraints; andλ(Q), which accounts for the capacity constraints (and also for
the connectivity constraints).

There are several valid but not equivalent choices for a definition of d(Q) and
λ(Q). In fact, there is a whole hierarchy of possible values forλ(Q) that lead
to different families of valid inequalities with nondecreasing right-hand side, so
that the higher families of inequalities dominate (see Definition 4.22) the lower
families but also lead to increasingly difficult separationproblems. The simplest

choice isλ(Q) =
P

v∈Q
dv

Lmax
, which leads to a separation problem for which there

is a polynomial time algorithm but still gives (together with a valid choice for
d(Q)) a valid formulation for DCVRP, see [16, 10]. The generatedfractional
capacity inequalitiesare in general not supporting for the DCVRP-polytope.
As all solutions have integralxe values it is obviously admissible to choose

λ(Q) =
⌈P

v∈Q dv

Lmax

⌉

which gives therounded capacity inequalitiesthat dominate

the simple capacity inequalities. However, the associatedseparation problem is
NP -complete [96], which also implies that even computing the LP-relaxation of
a classical VRP with rounded capacity inequalities is an NP-complete problem.
An even tighter formulation could be obtained by solving theassociated bin-
packing problem. But even this approach does not necessarily lead to supporting
inequalities, see [96] for a more detailed discussion.

The valued(Q) is the minimum valuek ∈ N such that the objective value
vk

TSP of a k-TSP problem onQ divided byDDCVRP
max and rounded up equalsk,

see [123]:

d(Q) = min

{

k ∈ N

∣
∣
∣k ≥

⌈
k-TSP(Q)

DDCVRP
max

⌉}

. (5.5.4)

Adapting the Model

Although not identical, the train routing problem bears many similarities to
DCVRP. In the following, we give a transformation such that the optimal so-
lution of any TRP instanceITRP can be derived from the optimal solution of the
corresponding transformed DCVRP instanceΨ(ITRP). This approach allows us
to use existing software packages extended with code for thedistance constraints.

An optimal solution to an instanceITRP of TRP consists of two independent
parts(Rx, ρx) and(Ry, ρy). In the following we describe w.l.o.g. how to trans-
form ITRP in order to obtain(Rx, ρx). Roughly the task of the transformation
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is to do the following: Translate a problem defined on a sparsegraph for which
the solution consists of a set of circuits covering the network to a problem on
the complete graph for which the solution consists of a set ofpaths covering the
network. Moreover, we have to correctly translate the length and capacity con-
straints. Note that the common transformationc{i,j} ←− c{i,j}− c{ĥ,i}− c{ĥ,j}
by Clarke and Wright savings [31] only works in the other direction, in the sense
that it transforms a problem with circuits into a problem with paths.

The transformationΨ applies the following types of modifications to instance
ITRP to achieve the above goals:

1. Add all missing edges toNTRP. The length of such a new edgee = (u, v)
is set to the length of the shortestu, v path inNTRP.

2. AddT s
couple· v̄ to the weight of each edge of the network.

3. (optional) Partly merge shipments with identical sourcethat will definitely
be transported by the same train.

4. Replace stations withj shipments,j > 1, by a j-clique with zero cost
and length edges. Identify each shipment with this source with one of the
nodes of the clique by setting thed· values of the clique nodes to the vol
values of these shipments.

5. Put a gadget on top of the network as explained below.

After Step 4 there is a specificshipment nodefor each shipment. Figure 5.5.1
shows how the TRP-instance after the first three modifications, represented by
the circular nodes is transformed into a DCVRP instance by adding extra nodes
and edges. The extra nodes are shown as rectangular nodes. The underlying idea
of the gadget is to allow each vehicle to “jump” from the hub toa start node in the
network. To that purpose,K extra nodes{ve

1, . . . , v
e
K} are added to the network.

These nodes are all connected to the hubĥ with edges of length and cost−M ,
with M >

∑

e∈E ce. The extra nodes are connected to the rest of the network
via the complete bipartite graph. The length of each such edge is zero. The extra
nodes are not interconnected. Each extra node has an associated demand ofM ′,
with M ′ >

∑

s∈S vol(s). Moreover, we set the load limitLDCVRP
max of the vehicles

in the DCVRP instance toM ′ +Lmax, and finally we setDDCVRP
max = Dmax−M .

The idea behind the−M edges is to force them into the solution. The shipment
of very high weights on the incident extra nodes enforces that each train can
visit at most one of these extra nodes. Together these two modifications enforce
that each route “jumps” exactly once to its starting node andgoes back to the
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M ′

M ′

−M

−M
Hub

Figure 5.5.1: Transformation from TRP to DCVRP for two trains. The original
graph consists of all circular nodes together with the solidblack edges. First
the green dotted edges are introduced to make the graph complete. Then all edge
length are increased byT s

couple·v̄ and nodes with multiple shipments are expanded
to cliques (not shown). Then the two new red square nodes withdemandM ′ are
added and connected via the (red) edges of length−M to the hub. The blue edges
have length zero and make possible a “jump” to the starting node of a route.
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hub node from there. The correctness of transformationψ is established in the
following lemma.

Lemma 5.5 Let a TRP instanceITRPbe given. LetσDCVRPbe an optimal solution
to the DCVRP instanceΨ(ITRP) of costc. Then, theX-part σx

TRP = (Rx, ρx) of
the optimal TRP solution has costc + K · M and can be reconstructed from
σDCVRP in linear time. The same statement holds for theY -part of the solution.

Proof. We first argue thatσDCVRP has the following form: It consists ofK cycles,
such that thei-th cycle can be written asCi = (ĥ, ve

i , vi,j1 , . . . , vi,jli
, ĥ). The

reason for this is that the supply ofM ′ of each extra node together with the
capacity constraints enforce that exactly one extra nodeve

i is on each circuitCi.
The negative lengths of the edges(ĥ, ve

i ) enforce that the extra nodes must be
directly after (or before)̂h on the circuits because one such negative cost edge is
taken per circuit.

To construct thei-th route ofσTRP we first setρx(s) = i for all shipments
in Ci. Then we set thei-th route to(vi,j1 , . . . , vi,jli

, ĥ), replacing nodes that
arose from an expansion to ani-clique by the original station node and deleting
consecutive occurrences of a node. We then reconstruct the original paths by
replacing edges that do not exist inNTRP by the shortest path inNTRP between
the two end nodes.

From the description of the transformation it follows that the feasibility of
σDCVRP guarantees thatσx

TRP is feasible w.r.t.Lmax andDmax and the covering of
the shipments. Note that we assume a couple time also at the stations where trains
start their journey. As for the optimality, assumeσx

TRP is not an optimal solution.
Then letS′ be theX-part of the optimal solution to the TRP consisting ofK
routes. This solution can be transformed intoK cycles by reverting the above
construction. It is straight-forward to check that these cycles form a cheaper
feasible solution for the DCVRP instance. �

Note that the bipartite component of the gadget can be slimmed down: All
we need is that there is a perfect matching between each subset Q ⊂ V of size
K and the extra nodes. Thus, for a subset ofK nodes inN , it is sufficient to
insert only the edges(vi, v

e
i ), i ∈ {1, . . . ,K} in the bipartite component. Also

the extra edges that are introduced to make the graph complete can be partly
removed: Each edge between two shipment nodes, for which thepick up of both
would already lead to a violation of the capacity or the distance constraint need
not be introduced.
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Separation Heuristics

The core part of every branch and cut algorithm is the design of a separation
algorithm that effectively separates a given fractional point from the convex hull
of integer solutions. The general separation problem is NP-complete and this still
holds for most known classes of valid inequalities including the rounded capacity
inequalities. For this reason, we focus on effectiveseparation heuristicsthat try
to find violated inequalities of Type (5.5.3c) but do not guarantee to find one if
one exists. As the cutting plane generation is embedded intoa branch and bound
framework, this does not compromise the correctness of the algorithm. These
inequalities comprise two subtypes, capacity and distanceconstraints.

We have based our implementation on the branch and cut code byRalphs et
al. [107] for the vehicle routing problem. This has the advantage that we could
use the already implemented separation heuristics for the capacity constraints.
Ralphs et al. report that most classes of valid inequalitiesfor the vehicle routing
problem that have been explored in the literature although theoretically interest-
ing prove to be either ineffective or very difficult to compute in practice. There-
fore, they focus on rather simple separation heuristics forthe capacity constraint,
see [107] for a more detailed description. The capacity constraints being handled
by the existing code we focus on the new distance constraintsfor our separation
heuristics.

As we are only interested in instances that arise from a transformationψ, we
describe how to find the cuts in the graphN3 = (V3, E3) which is the original
network of the TRP-instance after the fourth step of the transformation, i.e., be-
fore the gadget is added. In this graph an integral solution consists of a set of
paths that start from the hub nodeĥ. Given a fractional solution̂x we consider
thesupport graphN̂3 = (V3, Ê3), Ê3 = {e ∈ E3 | x̂e > 0}. If we temporarily
remove the hub nodêh a support graph decomposes into a set of connected com-
ponents{Q1, . . . , Qk′}, k′ ≤ K. We define thelengthℓ(Q) of such a connected
component to be the sum of the lengths of the edges inQ ∪ {ĥ} weighted by
x̂. Furthermore, we define theengine numbere(Q) of Q to be the number of
engines that enterQ in N̂3. The valuee(Q) is defined as⌊ c

2⌋+ 1, wherec is the

value of the (weighted, graph theoretic)[Q, {ĥ}]-cut in N̂3.

If for a connected componentQ the valueℓ(Q)/e(Q) exceedsDDCVRP
max −

M = Dmax, we introduce a valid inequality of Type (5.5.3c) forQ. Setting
λ(Q) to e(Q)+1 gives a locally valid cut. Next, we apply the shrinking heuristic
described in [107] to enforce stronger cuts if the previous search was unsuccess-
ful. All these cuts have only local validity in the branch-and-cut search tree,
becausêx depends on the branching decisions that enforce or forbid some edges.
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For integral solutions we make more efforts to come up with cuts. If the
length of a path in such a solution exceedsDmax, we introduce a cut with right-
hand-side2κ(Q). The valueκ(Q) is a global lower bound on the number of
vehicles needed to serveQ, and is explained below. We try to enforce stronger
cuts by considering only parts of each path: we sequentiallyadd edges along a
path until the distance-constraint is violated, and enforce a cut on this smaller
subset of nodes. Next, we shorten the path from its source, and add a cut for each
subset violating the distance constraint. This procedure is iterated by adding one
edge to the previous prefix of the path. As before, these cuts useκ(Q) as lower
bound on the number of vehicles. Note that if the right hand side of the cut does
not change after a shrinking step the new cut dominates the old one in the sense
of Definition 4.22.

The valueκ(Q) is computed independently of̂x by adapting two standard
relaxations of the TSP to our needs, the relaxation to 1-trees and the one to the
assignment problem. For a node setQ, we compute the minimum weight span-
ning tree onQ. If the cost of the spanning tree exceedsDmax, the set of nodes of
that component represents a cut. In order to find the best possible lower bound
onλ(Q), we proceed as follows. LetℓT be the weight of the tree,λ = 1. As long
as ℓT

Dmax
> λ, we increaseλ by one, decreaseℓT by the weight of the heaviest

edge in the tree and increase it by the weight of the cheapest not yet considered
edge fromQ to the hub nodêh. The idea is to subdivide the component in many
components, each served by one vehicle. The updated value ofℓT provides a
lower bound on the length of the route needed to serve these new components.
Hence, the final value ofλ is a global lower bound on the number of vehicles
needed to serve the nodes inQ.

If this procedure does not lead toλ > 1, we apply a second heuristic based
on the TSP-relaxation to the assignment problem, see [87]. We build a bipartite
graph as follows: Each partitionA andB consists of the nodes inQ. For every
original edge(u, v) we introduce two edges(uA, vB) and(uB, vA) of costc{u,v}.
Furthermore, we introduce one new node for each partition. This node represents
the hub node. We connect the hub node of partitionA to all nodes inB except
for the hub node with edges of weight as in the original graph.These edges
represent the trip from the last node to the hub. Similarly, we connect the hub
node of partitionB to all nodes inA (excluding the hub) with edges of weight
zero. These edges represent a zero cost edge from the hub to the start of the path.
The weight of the minimum weight bipartite matching is a lower bound on the
length of the minimum path needed to serve the nodes inQ. Hence, if the weight
of the bipartite matching exceedsDmax, at least two vehicles are needed to serve
the nodes inQ. In our implementation we use the LEDA assignment algorithm
[92]. The valueκ(Q) results from the best result of the two relaxations.
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To sum up, the transformationψ together with the additional cuts presented
in this section allowed us to use standard vehicle routing software to produce
solutions to the TRP problem. The results are presented in the experimental
Section 5.8. We present our solution approach to the TSSP problem later in
Section 5.7.

5.6 Model 2

Model 1 has some limitations: First of all, the decomposition approach implies
that the solution process for the TRP is blind to the constraints of the TSSP so
that the overall solution can perform badly w.r.t. the “secondary” optimization
criterion, the hub-capacity. For the same reason, the approach has problems with
tight time windows for which many of the TRP solutions will induce infeasible
instances for TSSP. A further problem with Model 1 is that it is not designed to
handle multiple hubs and trains that go between hubs.

Because of the above reasons we decided to tackle the generaltrain opti-
mization problem from a different angle by using a column generation approach
that naturally decomposes the problem into a master and a pricing problem (as
discussed in Section 4.7). The work on this column generation approach is not
entirely finished at the time of writing this thesis, but we can present some pre-
liminary results.

5.6.1 Master Problem

For the presentation of the decomposition approach we employ the terminol-
ogy introduced in Section 4.7. The master problem can be formulated directly
(instead of obtaining it from a Danzig Wolfe decomposition from a compact for-
mulation). We associate variables with routes. Informally, a router is a walk in
the railway network to or from a hub, for which we specify which shipments it
takes and when it reaches the nodes of the walk. The routes we consider must be
feasible in the sense that the arrival and departure times atthe stations are con-
sistent with the track length, the couple time and the average speed; the arrival
times at pick up/delivery nodes respect the time windows of the shipments; and
finally the maximum train load is respected. For a shipments and a router we
write s ∈ r if r picks up or deliverss. The costcr of any route is defined as
the sum of the cost of the edges in it and a contribution toCengine, as explained
below. The volume vol(r) is the total volume of shipments picked up (or deliv-
ered): vol(r) =

∑

s∈r vol(s). We denote by start(r) and end(r) the start and end
node ofr. We give a more formal definition of a route later in the pricing section.
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For the description of the master problem the current notionof a route is precise
enough.

For the master problem, a route to the hub is encapsulated in aBoolean vari-
ablext

r, wheret stands for the arrival time at the hub. We discretize time at the
hub so that the number of these variables is finite. LetT be the set of points in
time andt ∈ T . Similarly, the Boolean variableyt

r encodes whether router is
taken starting at timet from the hub. We also allow paths between the hubs which
we represent as Boolean variableshd:t

r . Herer simply stands for the source and
destination hub and the set of shipments taken. Timet stands for the departure
time at the source hub. Letδ be the time it takes to travel between the hubs.
Then, for a variablehd:t

r we write equivalentlyha:t+δ
r , i.e., we specify its arrival

time instead of its departure time. Following the policy of SBB Cargo we do
not consider pick-ups or deliveries on hub paths. Finally, we introduce for each
shipments ∈ S Boolean variablesds that model the possibility of transport-
ing s directly with a dedicated engine from its source to its destination. Such
a path is not associated to any time since it must always be possible to deliver
a shipment on the direct path respecting the time windows. Therefore, theds-
variables guarantee that an initial reduced master problemthat contains all such
ds variables is feasible. Abusing notation slightly, we denote byR the set of all
routes, irrespective of their type; furthermore, all summations are meant to be
over feasible routes separately for the summands. This means that a sum of type
∑

r∈R,t∈T x
t
r + ha:t

r is to be read as the sum of allX-variables that correspond
to feasibleX-routes with arbitrary arrival time at any hub plus the sum ofall Y -
variables that correspond to feasibleY -routes with arbitrary departure time from
any hub. All sums of this type in the constraints should be seen as a shorthand
notation for two separate sums.

The pickup and delivery time windows and the capacity constraint being han-
dled in the pricing subproblems, the master problem is a set partitioning model
that has to ensure thatX-routes andY -routes that depend on each other are time
consistent, that the capacity at the hub is not exceeded and that the two com-
modities, engines and cars are used consistently. In comparison to a “typical”-set
partitioning problem our master problem is quite complicated. We use the fol-
lowing formulation for the master problem.
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min
∑

r∈R,t∈T

crx
t
r + cry

t
r + crh

d:t
r +

∑

s∈S

csds

(π̂s) ds +
∑

t∈T,r∈R:s∈r

xt
r ≥ 1 ∀s ∈ S

(π̌s) ds +
∑

t∈T,r∈R:s∈r

yt
r ≥ 1 ∀s ∈ S

(φsh)
∑

t∈T,end(r)=h,s∈r

xt
r + ha:t

r

−
∑

t∈T,start(r)=h,s∈r

yt
r + hd:t

r = 0 ∀s ∈ S, h ∈ H

(σ̂hst)
∑

r:s∈r,end(r)=h
t1≥t

xt1
r + ha:t1

r

−
∑

r:s∈r,start(r)=h

t2≥t+T h

shunt

yt2
r + hd:t2

r ≤ 0 ∀t ∈ T, h ∈ H, s ∈ S

[

(σ̌hst)
∑

r:s∈r,start(r)=h
t1≤t

yt1
r + hd:t1

r

−
∑

r:s∈r,end(r)=h

t2≤t−T h

shunt

xt2
r + ha:t2

r ≤ 0 ∀t ∈ T, h ∈ H, s ∈ S

]

(χth)
∑

t1≤t
end(r)=h

vol(r)xt1
r + vol(r)ha:t1

r

−
∑

t2≤t
start(r)=h

vol(r) yt2
r + vol(r)hd:t2

r ≤ caph ∀t ∈ T, h ∈ H

(βht)
∑

r∈R,end(r)=h
t′≤t

xt′

r + ha:t′
r

−
∑

r∈R,start(r)=h

t′≤t+T h

shunt

yt′

r + hd:t′
r ≥ 0 ∀t ∈ T, h ∈ H

xt
r, y

t
r, h

·:t
r , ds ∈ {0, 1} ∀r ∈ R, t ∈ T, s ∈ S
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Let us discuss the model. To keep things simple, we refer to the constraints by
the name of the associated dual variables. Theπ-constraints are the set covering
part of the model that state that each shipment has to be picked up and delivered.
We chose a set covering model instead of a set partitioning model (with equality
constraints) because in this way the LPs tend to be easier to solve. Furthermore,
theπ dual variables are restricted in sign, which leads to an easier cost structure
for the pricing problems. See [126] for a discussion of the advantages of set
covering over set partitioning models.

The φ-constraints are global inflow-outflow constraints for the shipments.
Together with theσ-constraints they ensure the time consistent inflow-outflowof
shipments. Thêσ-constraints enforce that a shipment that arrives after time t has
a corresponding outgoing train after timet+T h

shunt. The constraint is designed in
such a way that also for fractional routes of a shipments each fractional incoming
route has a corresponding fractional outgoing route. Theσ̌-constraints represent
the symmetric statement for outgoing trains. In fact, theseconstraints are nothing
else than a variation of the classicalgeneralized flow conservation constraints
for networks with intermediate storagefor flows over time problems, see for
example [69]. Out of the three types of constraintsσ̌, σ̂, andφ every pair of
types implies the third type. Therefore, it suffices to include theσ̂- and theφ-
constraints in the formulation.

Theβ-constraints play a similar role for the engines as theσ-constraints do
for the shipments. Here, we allow that engines stay in the hub. This can lead
to complications if we charge the engine costs uniformly toX- andY -paths.
One way to solve this is to charge all engine costs toX-paths and to connect an
artificial node with a zero-length track to the hub, from which all “superfluous”
engines can start.

Theχ-constraints limit the capacity for each hubh ∈ H to caph cars in each
time slot.

There is one subtlety that we do not discuss here: Shipments with a hub as a
source or destination complicate the model. For this special case, constraints of
typeπ, φ, σ andχ have to be adapted. It is more or less straight-forward to do
this, but the modifications1 make the model unnecessarily hard to read. We do
however take care of these cases in our implementation.

1Note that it does not suffice to connect extra stations by zero-length tracks to the hubs. Such a
construction would affect theβ-constraints. In particular, we would potentially incur the engine costs
for the additional trips to the extra nodes.
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5.6.2 Pricing

As discussed in Section 4.7, the pricing problem consists offinding a feasible
route with negative reduced cost. From the above formulation it is clear that we
have separate pricing problems for the different types of variables. The easi-
est case are the direct paths: The reduced cost of a direct path associated with
variableds is

Cengine+
∑

e∈r

ce − (π̂s + π̌s) , (5.6.1)

wherer is the route associated with the direct path for shipments. As there are
only |S| direct paths it makes sense to include all of them in the initial reduced
master problem and to keep them in the formulation. This has the side effect that
the initial RLPM is always feasible, just as all other RLPMs if we keep the direct
paths variables in the formulation.

More interesting are theX- andY -routes. The reduced cost of anX-router
to hubh′ at timet′ is

Cengine+
∑

e∈r

ce −
∑

s∈r

(π̂s + φsh′)−
∑

s∈r,t≤t′

σ̂h′st

[

+
∑

s∈r,t≥t′+T h

shunt

σ̌h′st

]

− vol(r)
∑

t≥t′

χth′ −
∑

t≥t′

βh′t (5.6.2)

where

π̂s, π̌s, βht ≥ 0 andχth, σ̂hst, σ̌hst ≤ 0 andφsh ∈ R . (5.6.3)

This cost structure has the attractive property that for fixed t′ andh′ all costs
are either constants or can be charged to edges in the networkor to the pick-up
of shipments. This motivates the definition of the followingproblem.

Definition 5.6 (X-pricing) Given a networkN , a hubh′ ∈ H , an arrival time
t′, parametersLmax, T s

couple, v̄, a set of shipmentsS, and areduced costrc(s)
for each shipments ∈ S. Find a minimum cost walkw in N from hubh′ to an
arbitrary node and a set of shipmentsSr ⊆ S, such that

1. for all s ∈ Sr source(s) ∈ w,

2.
∑

s∈Sr
vol(s) ≤ Lmax,

3. t′ − timew

(
h′, source(s)

)
≥ departS(s), where timew

(
h′, source(s)

)
de-

notes the time it takes an engine to go on the tracks inw fromh′ to the first
occurrence of source(s) according to the parameters̄v, ℓ, andT s

couple.
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The cost of a walk is the sum ofCengine, the edge costs ofw and the reduced costs
of the shipments inSr.

A router is now more precisely defined as such a pair(w, Sr). This problem can
be understood as a variation of a resource constrained shortest path problem with
time windows. It is non-elementary in the sense that nodes can be visited more
than once but it is elementary in the sense that shipments canbe picked up only
once. Also note that even though the edge costs are nonnegative, the reduced
costs of the shipments can be negative. Therefore, the problem is NP-complete
even without the load limit and the time windows by an easy reduction from the
shortest (elementary) path problem without nonnegativityrestriction: It suffices
to replace each negative cost edge by a cost zero path consisting of two edges
such that the new node in the middle gets a single shipment, the reduced cost of
which equals the length of the edge in the shortest path problem.

We propose to solve theX-pricing problem by a particular label correct-
ing shortest path algorithm augmented with some extra information to guaran-
tee shipment elementariness. We do not give the details of the algorithm here
because it is a relatively straight-forward extension of existing label correcting
algorithms. The main framework is similar to the ones in [17,57]. The main
design decision is to store the following information in a label: reduced cost,
primal cost, time, capacity and the shipments that have beenpicked up.

As illustrated in [17, 57], the most important ingredients for an efficient label
correcting algorithm are efficientdominance rules. In short, a dominance rule
gives criteria as to when a given labelλ1 dominates a labelλ2 in the sense that
λ2 can be removed from the current list of active labels becausefor any feasible
solution that arises fromλ2 there is a corresponding feasible solution arising
from λ1 that has an objective value that is at least as good. We developed several
dominance rules that take into consideration the capacity constraint, the current
objective value and the time windows. It is also possible to develop dominance
rules for complete time slots. A simple such rule is as follows. Let hubh′ be
fixed. If t2 > t1 and for alls ∈ S it holds that

∑

t≤t2
σ̂h′st ≥

∑

t≤t1
σ̂h′st, i.e.,

∑

t1<t≤t2
σ̂h′st = 0 and

∑

t1≤t<t2
βh′t = 0 we know that the complete time

slot t1 is dominated byt2 in the sense that an optimal solution fort2 cannot be
worse than an optimal solution fort1.

In our implementation we solve one pricing problem for each pair of hub and
point in time. A more involved approach could solve the pricing problem for
all time slots in one application of a label-correcting algorithm. In that case one
could also apply dominance rules for labels from different time slots.
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The reduced cost of aY -router from hubh′ at timet′ is:

∑

e∈r

ce −
∑

s∈r

(π̌s − φsh′) +
∑

s∈r,t≤t′−T h

shunt

σ̂h′st

[

+
∑

s∈r,t≥t′

σ̌h′st

]

+ vol(r)
∑

t≥t′

χth′ +
∑

t≥t′−T h

shunt

βh′t (5.6.4)

TheY -pricing problem is completely symmetric to theX-pricing problem.
Therefore, we do not discuss it here.

The reduced cost of anH-router from hubh′ to hubh′′ with departure time
t′ and arrival timet′′ is

cost(h′, h′′) +
∑

s∈r

(φsh′ − φsh′′)−
∑

s∈r,t≤t′′

σ̂h′′st +
∑

s∈r,t≤t′−T h

shunt

σ̂h′st

[

−
∑

t≥t′

σ̌h′st +
∑

s∈r,t≥t′′+T h

shunt

σ̌h′′st

]

− vol(r)
∑

t≥t′′

χth′′ + vol(r)
∑

t≥t′

χth′

−
∑

t≥t′′

βh′′t +
∑

t≥t′−T h

shunt

βh′t .

(5.6.5)

Here cost(h′, h′′) denotes the fixed cost for the trip between the hubsh′ andh′′.
Also for theH-route it holds that all reduced costs are either constants for fixedt′,
h′, andh′′ or can be charged to the pick-up of shipments. As the walk through the
graph for anH-route is always the direct connection between the two involved
hubs, theH-pricing problem simplifies to a (comparatively) simple knapsack
problem. To solve it we use the algorithm (and the code) by Pisinger [102], which
we adapt to handle fractional profits as described in Ceselliand Righini [23].

5.6.3 Acceleration Techniques

The literature on Column Generation abounds with techniques to accelerate CG-
algorithms. It seems that the number of acceleration techniques that one can
apply to a single problem is limited more by the willingness to implement, test,
and evaluate them than by the number of different such techniques. In [45] De-
saulniers, Desrosiers and Solomon propose a whole catalogue of techniques that
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have proved helpful in various applications. Similar to thestyle of their paper we
briefly discuss the techniques that we use.

Pre-Processing Strategies. As already mentioned above, wecondensed the orig-
inal SBB-Cargo network to a smaller network: To this end, we first calcu-
late the all-pairs shortest path among the nodes with shipments and the
hubs. Edges that do not occur on any such shortest path can be safely
ignored. In the resulting graph we contract degree-two nodes if they are
neither a hub nor a source nor a destination of any shipment.

Aggregation. A commonly used technique for routing problems is to aggregate
demands. This technique is of limited use in our case, because there are
no shipments with identical source and destination. It is however possible
to aggregate shipments with identical source only in theX-pricing and
shipments with identical destination only in theY -pricing. This leads to a
moderate speed-up of the pricing steps.

Heuristic Pricing. As explained in Section 4.7 it suffices for the correctness of
the algorithm that the pricing problem returns any column with negative
reduced cost if there is one. For this reason, it is beneficialto use pric-
ing heuristics or to stop a pricing calculation prematurelyif a column with
negative reduced cost has already been found. We apply both techniques
by managing acolumn poolthat contains candidates for negative reduced
cost columns. Before the pricers are called the column pool is checked for
negative reduced cost columns. Additionally, we stop the label-correcting
algorithm if a large enough set of negative reduced cost columns has al-
ready been found.

Perturbation. For the calculation of the reduced master problem we perturb the
right hand side of theσ-constraints by small random values. As predicted
in the literature [44] this leads to a significant speed-up ofthe LP-solving
steps.

Column Elimination. In order to keep the reduced master problem at a rea-
sonable size we subject the columns to aging. If a column keeps being
nonbasic for a given number of pricing iterations it is removed from the
RLPM and added to the column pool. This technique gives a speed-up for
a well-chosen threshold value. However, it trades off the speed that it takes
to solve a single RLPM versus the number of iterations it takes to solve
the whole problem and can therefore even be detrimental to the solving
process.
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Stabilization. A common problem in column generation is that the dual vari-
ables oscillate and assume extreme values (if compared to the dual values
at the optimal solution). This behavior can be partly explained by the prop-
erty of the simplex algorithm that it finds an extreme point ofthe optimal
face. Different schemes to remedy this problem have been introduced. We
experimented with the one by Rousseau, Gendreau and Feillet[110] that
sets up a sequence of linear programs with random objective function to
find an interior point of the optimal face. Our preliminary experience with
this approach is that it indeed stabilizes the dual values and that the objec-
tive value seems to converge faster. Unfortunately, this better convergence
comes at the cost of highly increased solution times for the additional lin-
ear programs that need to be solved.

5.6.4 Heuristics

We experimented with a few heuristics. The currently most successful one is
a variation of the simpledive-and-fixheuristic [133, 110] augmented with col-
umn generation steps and some problem specific rules. The heuristic iterates the
following steps until an integral solution has been found.

1. Select a candidate columnc with the highest fractional value such thatc is
time-consistent with the so far rounded up columns and roundup c.

2. Round down all columns in the RLPM that are not time-consistent withc.

3. Stop the pricer forc’s column type from generating columns that include
shipments ofc.

4. Resolve the restricted master problem with the new boundsusing the dual
simplex algorithm.

5. Do several pricing and resolving iterations to include new columns into the
RLPM.

6. If the solution is integral stop. Otherwise go back to Step1.

Additionally, after each fixing step we execute a local search heuristic that
tries to complete the current partial integral solution with other fractional columns
from the RLPM (which it also shifts in time) and newly generated columns.

Our heuristic is unconventional if compared to other heuristics in column
generation settings that rely more on the compact formulation or metaheuristics
that are initialized and guided by the column generation process, see [41]. In
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our case we have a master problem that is “unusually complicated”, in which a
feasible fractional solution already guarantees that all fractionalX-routes have
a compatible counterpartY -route, i.e., the fractional solutions are already time
consistent and do not exceed the hub capacity. This propertywould be lost if we
tried to build our own routes out of the information in a compact formulation.

On the other hand, a different problem arises that is usuallynot a topic in
Column Generation: By rounding up and down fractional routes it can happen
that the RLPM becomes infeasible. In this case we apply a technique called
Farkas Pricing, which has not been applied in column generation so far to the
best of our knowledge. It is introduced in the SCIP library byAchterberg [3],
which we use in our implementation. We briefly explain it in the next section.

5.6.5 Farkas Pricing

Consider a restricted linear programming master problem ingeneral form that is
infeasible.

min cx (RLPMgen)

b ≤ Ax ≤ d

e ≤ x ≤ f

As in the proof of the Farkas’ Lemma 4.5 we can set the objective function to 0
and consider the dual linear program

maxubb− udd+ ree− rff

ubA− udA+ re − rf = 0

ub, ud, re, rf ≥ 0 .

This linear program is feasible, which is certified by(ub, ud, re, rf ) = 0 and
must therefore be unbounded, as the primal problem is infeasible. From the
complementary slackness conditions it is clear that out of the two bounds asso-
ciated with each constraint and each variable only one can benonzero if these
are different. If they are the same, still only one needs to benonzero. Therefore,
we can setu = ub − ud andr = re − rf . Then we have the following set of
(in)equalities that certifies the primal infeasibility.

ubb− udd+ ree− rff > 0

uA+ r = 0 .
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As we have only a restricted linear programming master problem this does not
imply that the underlying problem is infeasible. The aim of Farkas pricing is to
add further variables such that the resulting RLPM is feasible again. An addition
of a variable corresponds to the addition of a further columnto A. In our case
we have all the nonbasic variables at their lower bounde = 0 < f . Therefore, it
follows from complementary slackness thatrf = 0 andre ≥ 0, so thatr ≥ 0.
Suppose we find a new variable corresponding to a columnai such that−uai <
0. Then for the infeasibility certificate above to carry on we need thatri =
−uai < 0 which is a contradiction tori ≥ 0 and thus destroys this infeasibility
certificate. This does not imply that the new RLPM is feasible. Still, it is clear
from the finiteness of the number of variables that this procedure must find a
primal feasible solution in a finite number of steps if the primal is indeed feasible.
To get a columnai with −uai < 0 we call the same pricing algorithm as before
except that we set the objective function to 0. The resultingreduced costs0−uai

are exactly what is needed here. The SCIP library is designedin such a way that
it automatically switches to Farkas pricing if an RLMP becomes infeasible.

5.6.6 Branching

One issue not discussed so far is the question ofbranching rulesand selection
rules forbranching candidates. In column generation one often applies branch-
ing rules that substantially differ from branching rules for classical branch and
bound. In the classical approach, one chooses a fractional Boolean variable, fixes
it to one in the first subproblem and to zero in the second. While fixing a variable
to one can be sensible in a CG setting, fixing it to zero might incur problems in
the pricing steps because it could be difficult to stop the pricer from regenerating
a rounded down column. Moreover, such a step is not very meaningful when
most variables have values close to zero. Branching rules for column generation
usually compute from a fractional solution the values of variables in a compact
formulation and branch on these. For example, we implemented a branching
rule that first computes the fractional assignments of shipments to the hubs (the
resulting value can be seen as a variable of a compact formulation) and then
branches on this fractional assignment. Finally, all branching rules that are used
for column generation for the vehicle routing problem can beused in our set-
ting, see [37, 75] for details. As with our current implementation the solution of
the root node of the branch and price tree takes a long time, weonly did a few
preliminary experiments with different branching rules. Instead, we focussed on
obtaining integral solutions already in the root node. Our experimental findings
with Model 2 are summarized in Section 5.8.
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5.7 Shunting and Scheduling

In this section we take a closer look at the shunting and scheduling problems that
arise in our problem context: the TSSP, a simplified variant of it and finally a
problem connected to the optimization of the precise sequence of shunting oper-
ations in the shunting yard. The simplified version of TSSP can be formulated
as follows. Given a solution to the TRP problem as sets of incoming and out-
going trains, decide in which sequence the trains should be scheduled to arrive
and depart, such that the capacity of the shunting-yard at the hub is not exceeded.
This means that we consider the sequencing variation of TSSP. We show that
this problem is NP-complete, even in a very restricted setting. Then we discuss
how to solve the TSSP problem by an ILP-formulation. Finally, we consider the
problem of optimally grouping the shunting operations in the shunting yard.

5.7.1 Hardness of Directed Minimum Cut Linear Arrange-
ment

The sequencing problem for incoming and outgoing trains turns out to be NP-
hard, already in a very simple version.

Corollary 5.7 (of Theorem 5.9) It is NP-hard to decide if a collection of incom-
ing and outgoing trains can be sequenced such that the capacity of the shunting
yard is sufficient, even if every incoming train consists of precisely 3 cars, and
every outgoing train of precisely 2 cars.

Given the composition of the incoming trainsRx = {rx
1 , . . . , r

x
m} and the

outgoing trainsRy = {ry
1 , . . . , r

y
n}, the sequencing task at hand can be depicted

by the bipartite graphGio = (U ∪ V,E) in Figure 5.7.1(a), thein-out graph.
The incoming trains correspond to nodes inU , the outgoing trains to nodes inV .
Each edgee = (rx

i , r
y
j ) has avolumevol(e) that corresponds to the number of

cars that trainry
j receives from trainrx

i . Observe that this value is well-defined
as each shipment is picked-up and delivered by exactly one train as specified by
theρ-functions in a TRP solution. We model precedence constraints by directed
edges, for every car from its arriving train to its departingtrain, expressing that a
car needs to arrive (with its train) before it can depart. We callGio auniformly di-
rected bipartite graph, because all edges are directed fromU to V . Alternatively
to the volume information on the edges we can also restrict ourselves to in-out
graphs with unit weight edges and allow parallel edges to model the volume.

The sequencing task corresponds to finding alinear arrangementof the graph
G, i.e., an embedding of the graph onto the horizontal line, such that all edges
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Figure 5.7.1: Illustrations for Minimum Cut Linear Arrangement
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are directed from left to right. For such an arrangement, themaximal number
of edges crossing any vertical line is the(cut-) width, and it corresponds to the
maximal number of cars residing in the shunting-yard. The width of a graphG
is given by the minimal width of a linear arrangement ofG. This means that it is
not necessary to consider the extra shunting timeTH

shunthere because it represents
a constant offset for the departure times that has no effect on the sequencing
problem. Conversely, any uniformly directed bipartite graph can be understood
as an in-out graph. Hence Corollary 5.7 follows indeed from Theorem 5.9 below.

Let L : U ∪ V → {1, . . . , n} be an optimal linear arrangement of the uni-
formly directed bipartite graphG = (U ∪ V,E). We can assume that inL every
outgoing train departs as early as possible that is, as soon as all its cars are avail-
able. Conversely, there is no use in scheduling an incoming train to arrive before
some of its cars are needed. Together this means that given the sequence of the
incoming trains it is easy to compute an optimal sequence of the outgoing trains,
and vice versa.

Without the directions and the restriction to bipartite graphs, this problem is
known as the “minimum cut linear arrangement”, a well studied NP-complete
problem [62, GT44] that was shown to remain NP-hard for graphs of degree 3
[90], and even planar graphs of degree 3 [94]. We extend theseresults in the
following way.

Lemma 5.8 For any constantc > 0 it is NP-hard to approximate minimum
cut linear arrangement with an additive error ofc, even on planar graphs with
degree 3.

Proof. By reduction from the NP-hard problem “minimum cut linear arrange-
ment for planar graphs” [94]. We follow closely the reduction presented in [94].
LetG be a planar graph, andℓ the bound on its width. We constructG′ by tak-
ing a U-wall (see Figure 5.7.1(c)) of nodes with degree 3 for every node ofG.
G′ has the property that no two U-walls can significantly overlap in any linear
arrangement. (This idea goes back to [90].) The edges ofG are replaced by
edges inG′ connecting nodes of the inner parts of the two U-walls, the square
nodes in Figure 5.7.1(c). As limitL for the width ofG′ we use the cut-width
of the U-walls (which equals their height) plus the boundℓ on the width ofG.
Now from any linear arrangement that obeys this limitL we can reconstruct an
arrangement of the original graphG that has widthℓ. To extend the result in the
sense of the lemma, we “multiply” the construction by a factor c, i.e., we use
c-times bigger U-walls, and replace every original edge byc new edges. If there
is a linear arrangement of the original graph of widthℓ, the constructed graphG′

has widthcL. Conversely, even from an arrangement of the new graph of width
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cL + c − 1, we can reconstruct a linear arrangement because the U-walls still
cannot overlap significantly, and this linear arrangement has widthcℓ + c − 1.
Because every original edge is represented byc parallel edges, every cut is di-
visible byc, and hence this linear arrangement actually has widthcℓ, hence the
original graphG has widthℓ. �

Theorem 5.9 It is NP-hard to decide if a uniformly directed bipartite planar
graph of out-degree 3 and in-degree 2 admits a linear arrangement of widthℓ.

Proof. By reduction from the problem of approximating the width of aplanar
graph with an additive error of 7 of Lemma 5.8. LetG be the undirected planar
graph andL be the width limit defining an instance of that problem. ThenG
either has width≤ L or ≥ L + 7, and it is NP-hard to distinguish these two
cases. We construct a graphG′ by replacing every edgee with a pair of edges
directed toward a new nodeve, see Figure 5.7.1(b). This graphG′ is also known
as the node-edge incidence graph with the links directed from nodes to edges (or
vice-versa, this is just symmetric). We set the width limitℓ = L+ 6.

Any optimal linear arrangement ofG′ will place all the edge-nodesve as far
left as possible, because not doing so can only increase the width. The nodes
of G are also nodes ofG′, such that the above observation allows us to directly
map arrangements ofG to arrangements ofG′ and vice versa. Then directly to
the left of an original nodev, the width ofG′ is the same as the width ofG. Only
to the right of it, it is increased by twice the number of neighbors ofv in G that
are arranged left ofv. By constructionv has at most 3 neighbors inG. For a
neighboru of v inG that is arranged left ofv, the directed edge(u, ve) continues
up tove, and there is the additional edge(v, ve).

Concluding we see that ifG has width≤ L, thenG′ has a linear arrangement
of width≤ ℓ = L + 6, but if the width ofG is≥ L + 7 > ℓ, thenG′ has width
≥ L+ 7 > ℓ. �

This hardness result is complemented by the following consideration.

Theorem 5.10 Every uniformly directed bipartite graph with maximum degree 2
admits a linear arrangement of width 4, and it takes linear time to determine the
minimal width of such a graph.

Proof. A graph of maximum degree 2 decomposes into cycles and paths.A
single edge has width 1, two directed edges have width 2, a path has width 3,
and a cycle has width 4 (consider the last incoming train, it adds 2 cars to a
shunting-yard containing two cars). �
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5.7.2 Solving the TSSP Problem in Practice

As the instances of the TSSP problem that arise in our settingare not too large,
we can solve them by a simple ILP formulation.

For this formulation we discretize the time horizon intoτ points in time
T = {0, . . . , τ − 1} and we make use of the in-out graphGio as defined in
Section 5.7.1. We introduce Boolean variablesat

r anddt
r′ that model arrival (and

departure) of the trainsr ∈ Rx (r′ ∈ Ry, respectively) at timest ∈ T . Here, we
assume that the shunting timeTH

shunt is given in time slots. We refer toE as the
edge set of the in-out graphGio.

min C

s.t. at
r ≤ at+1

r ∀r ∈ Rx, t ∈ T (5.7.1a)

dt
r ≤ dt+1

r ∀r ∈ Ry, t ∈ T (5.7.1b)

at
r ≥ d

t+T H
shunt

r′ ∀t ∈ {0, . . . , τ − TH
shunt},

∀(r, r′) ∈ E (5.7.1c)

dt
r′ = 0 ∀r′ ∈ Ry,

∀t ∈ {0, . . . , TH
shunt− 1} (5.7.1d)

∑

e∈E
e=(r,r′)

vol(e)(at
r − d

t
r′) ≤ C ∀t ∈ T (5.7.1e)

ati
r = 0 ∀r ∈ Rx :arriveH(r)

!
>ti (5.7.1f)

dti

r′ = 1 ∀r′ ∈ Ry :dep(r′)
!
<ti (5.7.1g)

a0
r = 0, aτ−1

r = 1 ∀r ∈ Rx

d0
r′ = 0, dτ−1

r′ = 1 ∀r′ ∈ Ry (5.7.1h)

all a·, d· ∈ {0, 1} (5.7.1i)

Equations (5.7.1a), (5.7.1b) and (5.7.1h) impose that, forevery edgee, the
variablesa·e andd·e form a monotone sequence starting with 0 and ending with
1. The idea is that the train arrives (or departs, respectively) at the time when the
0-1 transition takes place, i.e, for anX-routerx ∈ Rx we set arriveH(rx) = t′

if at′+1
rx − at′

rx = 1 and symmetrically depH(ry) = t′′ if dt′′+1
ry − dt′′

ry = 1 for a
Y -routery ∈ Ry. Constraints (5.7.1c) and (5.7.1d) enforce that an outgoing train
can only depart if all its cars have arrived and thatTH

shunt time units are available
for shunting those cars. Constraints (5.7.1e) represent the capacity constraint
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over all time slots, which is the objective value. Constraints (5.7.1f) and (5.7.1g)
introduce time constraints for the earliest arrival / latest departure of trains, i.e.,
from the time windows we infer a constraint of type arriveH(r) > t′ on the
arrival (departure) times at the hub and express this in the form of Constraints
(5.7.1f) and (5.7.1g).

Our experiments show that for the problem instances that arise from solu-
tions to the TRP on our instances, in a few minutes we can calculate a shunting
schedule for a given routing to and from the hub that minimizes the necessary
hub capacity and respects the time windows.

5.7.3 Optimal Grouping of Shunting Operations

In this section, we take a closer look at the shunting operation. Beforehand we
assumed that it always takes a constant additional timeTH

shunt to compose an out-
going train, which is clearly a rough model that ignores the concrete sequence of
shunting operations that is necessary to compose the train.In fact, it is an inter-
esting algorithmic problem to come up with methods that find agood sequence
of these operations for a given shunting yard and a specification of incoming and
outgoing trains. Surprisingly, this task turned out to be quite difficult for various
reasonable models of what a good sequence precisely means. One important rea-
son for that is that shunting yards differ in their layout andin the way in which
they are operated.

In the literature the question of shunting is addressed in a few publications
[72, 103, 39, 40]. From some discussions with practitionersI can report that
these techniques are not used in reality. Apart from the problem with the different
layouts there is a further problem to the implementation of these methods: All
presented schemes assume that there is a given fleet of incoming trains that waits
in the shunting yard when shunting starts and that this fleet is to be shunted such
that the outgoing trains are composed in one shot. In reality, shunting starts well
before all incoming trains have arrived.

Here, we consider a simple model for this dynamic aspect,grouped shunting,
in which we periodically decide to use one of the static shunting methods to shunt
the outgoing trains for which all cars have arrived at the shunting yard. This
results in a scheduling problem that is algorithmically interesting. However, we
do not claim that this method is always the method of choice for a real shunting
yard.

The problem setting is as follows. We assume here that we havealready
found a good order for the trains to arrive at the shunting yard. More pre-
cisely, let us assume that we have computed all targeted arrival times I =
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(b) Gt ⊂ Gio represents a possible con-
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time t (solid edges), cf. Fig. 5.7.1(a).

Figure 5.7.2:grouped shunting example

{arriveh(r1), . . . ,arriveh(rm)} of incoming trainsRx, for example by the meth-
ods of the last section. From this, we compute the earliest possible departure
timesO = {ω1, . . . , ωn} of the outgoing trainsRy as follows. The earliest possi-
ble departure timeωi of an outgoing trainry

i is the latest arrival time arriveh(rx
j )

of an incoming trainrx
j that has cars forry

i : ωi = maxj:(rx
j

,ry
i
)∈E arriveh(rx

j )

with respect to the edge setE of the in-out graphGio. Note that these earliest
possible departure times do not include the time needed for shunting in contrast
to the actual departure time that are calculated by the algorithm that we present
in this section. It follows that the earliest possible departure times are a subset of
the arrival times (O ⊆ I), see Figure 5.7.2(a). The trains are indexed w.l.o.g. in
the order of their arrival times/earliest possible departure times.

At time t all cars that are in the shunting yard correspond to a subgraphGt

of Gio, see Figure 5.7.2(b) for an example. If we start a shunting phase at time
t, the set of all carsOt in the shunting yard at timet belonging to complete
outgoing trains are composed. In Figure 5.7.2(b) the setOt corresponds to all
nodes in the bottom partition that have all their adjacent edges inGt, i.e.,ry

1 and
ry
2 . The remaining cars are left in the shunting yard. We furtherassume that

the time needed for shuntingOt depends on the number of cars inOt, denoted
by |Ot|. We assume that the shunting time is given by a monotone, concave
functionf : N → R+, wheref(n) is the time needed to shuntn cars. Note that
the concavity just states that a static shunting task for some set of cars cannot take
longer than breaking this set up into subsets and sequentially perform the static
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shunting on these subsets. This property trivially holds for all sensible static
shunting methods. Given a shunting operation starting at time t, the outgoing
trains are composed in the time interval[t, t+ f(|Ot|)], and during that time no
other shunting operation can take place.

Our task is to decide how to group the shunting operations, i.e., at which
points in time we should start to shunt. Observe that the carsthat are in the
shunting yard at timet depend on the grouping decisions beforet. For the objec-
tive of makespan minimization(Cmax) we call the problem theoptimal grouping
problem with makespan objective. The makespan refers to the end of the last
shunting phase. We give a dynamic programming algorithm forthis problem.

For eachωi ∈ O, the algorithm maintains a stateW (ωi) = (t′, v′) with
the following properties. Timet′ is a point in time within the intervalIi =
[ωi, ωi+1) andv′ represents the minimum number of cars waiting to be shunted
at t′. Together, the pair(t′, v′) represents apartial solution until (interval)i, that
is, a solution to the problem restricted to the intervals up to Ii, which has ended
shunting before or at timet′ and hasv′ cars waiting to be shunted. The interval
for the last pointωmax ∈ O is defined asImax = [ωmax,∞). For convenience,
we writet = W t(ω) andv = W v(ω) for W (ω) = (t, v).

The key idea of the algorithm is that it suffices to store a single state for each
interval. We express this by a dominance rule for two states of the same interval.
The state(t, v) dominates(t′, v′) if and only if t+ f(v) < t′ + f(v′).

The following lemma makes the usefulness of dominance precise.

Lemma 5.11 (Dominance Rule)Consider a solutionσ with makespanCσ
max

which starts a shunting phase withv cars at timet of intervalIi. Assume further
that a state(t′, v′), t′ ∈ Ii exists that dominates(t, v). Then, a solutionσ′ exists,
which starts shunting withv′ cars at timet′ and has a makespan of less than or
equal toCσ

max.

Proof. As (t′, v′) dominates(t, v), we can construct a solutionσ′ as follows. The
existence of(t′, v′) guarantees that a partial solutionP until i exists. We buildσ′

by usingP up tot′. At t′ we start a shunting phase that ends ate′ = t′ + f(v′),
i.e., beforee = t + f(v), where the corresponding shunting phase inσ ends
(by definition of dominance). Ift is the start of the last shunting phase inσ we
already have a complete solution with a shorter makespan. Otherwise, the rest of
the new solution consists of the grouping decisions inσ at or aftere′. Let snext be
the start of the first shunting phase at or aftere′. Note thatsnext ≥ e > e′ since
(t′, v′) dominates(t, v). At snext, the solutionσ′ has exactly the same number of
cars waiting for shunting asσ has, sincet andt′ are in the same interval. The
cars available atsnext in σ andσ′ are just the weights of outgoing trains in the
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interval from[t, snext) resp.[t′, snext). These two values are identical. �

A solutionσ induces a set of states in the intervals in which it starts andends
shunting and in the intervals in which it waits. For the starting and ending phases
this is the exact time at which the shunting starts or ends together with the number
of cars available for shunting at these times. A solution that waits in an intervalIi
induces the state(ωi, v), wherev is the number of cars available for shunting at
ωi. We say that asolution dominates a state sif it induces a states′ in the interval
of s that dominatess. Similarly, we say that a solutionσ dominates a solution
σ′ if σ induces a state that dominates a state ofσ′. Because of Lemma 5.11,
it is sufficient to consider undominated solutions when searching for an optimal
solution. We introduce the same notation for partial solutions untili, which only
induce states in intervalsIj , j ≤ i.

Note that dominance for the last interval[ωmax,∞) is equivalent to a better
makespan. Therefore, an undominated solution is an optimalone. Furthermore,
an undominated partial solution can be extended to an undominated optimal so-
lution by the same arguments as in Lemma 5.11.

The dynamic program proceeds as follows, see Algorithm 5 fora precise
formulation. First, we initialize prefix sumsS(ω) for each event point. These
sums stand for the cumulated number of cars of all outgoing trains up to timeω.
Then we iterate over the events chronologically and update theW values. The
crucial observation is that shunting at timet = W t(ω) means that we keep the
shunting yard busy for at leastσ = f(W v(ω)) time. Letω′ be the event point
directly beforet′ = t + σ. To find this eventω′, we need a dictionary onO
that supports predecessor queries. If we decide to start a shunting phase att,
then there is a feasible solution with state(t′, S(ω′) − S(ω)) in the interval of
ω′. We use the dominance rule to find out if this state should replace the current
state in the interval ofω′. In order to account for the possibility of not shunting
directly aftert′, we also have to update all states in intervals afterω′, which we
do implicitly in line 2 before accessingW (ω). After the last iteration, the values
W reflect an optimal solution. In order to find the minimum makespan, we need
to add one extra state after the last event. In this state we calculate the finish time
after the additional shunting operation at the end, i.e., the makespan.

Theorem 5.12 Algorithm 5 solves the grouping problem with makespan objec-
tive inO(n log n) time.

Proof. We prove the correctness of the algorithm by the following invariant:

At the end of thei-th iteration of the forall loop 1 the following two properties
hold:
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Algorithm 5 : Optimal grouping
// Initialize Prefix Sums (in linear time in the obvious way)
forall ω ∈ O do S(ω)←−

∑

i:ωi≤ω vol(ry
i )

// Initialize States
W (ω1)←− (ω1, vol(ry

1 ))
Cmax ←−∞, vold ←− 0
// Iterate
forall ω ∈ O in chronological orderdo1

(t, v)←−W (ω)←− DOMINANCE
(
(ω, vold + vol(ry

i )),W (ω)
)

2

t′ ←− t+ f(v)
if t′ < ωmax then3

ω′ ←− PREDECESSOR(t′)4

W (ω′)←− DOMINANCE
(

W (ω′),
(
t′, ω + S(ω′)− S(ω)

))

5

else
Cmax ←− min

{
Cmax, t

′ + f(S(ωmax)− S(ω))
}

6

vold ←− v
return Cmax

INV1(i) For all intervalsIj , with j ≤ i the state(t, v) = W (ωj) is not domi-
nated by any partial solution untili.

INV2(i) No undominated partial solution untilk exists that dominatesW (ωk).
and starts its last shunting phase beforeωi and ends this phase in interval
Ik, k > i.

The correctness of the invariant implies the correctness ofthe algorithm be-
cause non-domination implies optimality.

We prove the invariants by induction oni. For i = 0 there is nothing to
prove. Consider iterationi > 0 and the corresponding state(t, v) = W (ωi).
For INV1(i) we have to set(t, v) to a state that is not dominated. Such a state
corresponds to a specific partial solution untili. If that solution ends a shunting
phase inIi thenW (ωi) is already set correctly by INV2(i − 1). If this is not
the case, then this solution ends a shunting phase beforeIi and waits inIi. In
this case(ωi,W

v(ωi−1)+ vol(ry
i )) is a non dominated state and it is assigned to

W (ωi) in line 2. This makes use of the fact thatW v(ωi−1) is undominated until
i− 1 because of INV1(i− 1). After line 2 the stateW (ω) cannot be dominated
by another state and INV1(i) holds.

Line 5 creates the state that corresponds to a start of a shunting phase ini and
updates the interval in which the phase ends. After this update INV2(i) holds:
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We have to check the property for all undominated partial solutions untilk that
start a shunting phase inIi, for the others it is clear from INV2(i− 1). We know
from INV1(i) that in Ii the stateW (ωi) cannot be dominated. Therefore, any
undominated solution that starts shunting inIi has to end this shunting phase in
the interval ofω′, see Lines 4 and 5. This implies that we do the only necessary
update to preserve the second property.

We can use a balanced search tree for the predecessor querieswhich guaran-
tees a running time ofO(n log n). �

5.8 Experiments

In this section we report on the experimental results with the three models.

5.8.1 Instance

The planners of SBB Cargo Express Service provided us with real data, i.e., the
actual railway network and an (averaged) supply and demand matrix of a day
in Summer 2005. As already mentioned, the condensed networkhas 121 nodes
and 332 edges. In Figures 5.8.1 and 5.8.2 we show the originalnetwork (green
edges, all nodes) together with the condensed network that we extracted from it
(black edges, black and blue nodes). In total, there are around 200 shipments that
are transported almost every day. These data represent the supply and demand
averages over the workdays of a week. However, within one week, the supply
and demand changes (slightly), that is, on a fixed day, not allof these shipments
are really present. Note that one would expect that the averaged instance has
higher cost than the average weekday cost because the formercontains the union
of all shipments present in the weekdays.

In order to evaluate the quality of our solutions we evaluated the cost of the
current hand-made schedules in our model. These schedules are for the current
situation with a single hub. We are well aware that this does not necessarily equal
the exact real cost of such a solution. Both in our model and for this evaluation we
set the cost of an engine to an estimative big-M-like value of1000 in comparison
to the unit cost we charge for a driven kilometer. Note that small to medium
changes of this value cannot influence the structure of the optimal solution as
long as the distance that can be saved by employing an additional engine is well
below this value. The resulting costs of the hand-made solutions are shown in
Table 5.1.
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Figure 5.8.1:The original railway network together with the condensed network
that we extracted. The stations are given together with their SBB codes. Blue
nodes are stations with shipments in the Cargo Express Service, black nodes are
stations without shipments that were retained in the condensed network to keep
it sparse. The red nodes correspond to hubs. The green nodes and edges are
stations that are not retained in the condensed network.
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Figure 5.8.2:An enlarged detail of the complete network of Figure 5.8.1.

Table 5.1: Estimated costs of the current hand-made schedules in our model
Monday Tuesday Wednesday Thursday Friday
48534 52086 51078 52086 52100

If we compare the size of our problem instance to the size of the largest VRP
instances that can be solved exactly as presented in a typical VRP survey pa-
per [19] for the “easier” standard vehicle routing problem,it turns out that the
SBB instance has more shipments than each of the instances presented there.
Also, the underlying network has more nodes than each of the instances in this
publication except forE151-12c. This emphasizes the fact that the SBB in-
stance is a challenging one, even more so as we try to solve therouting and the
scheduling problem together. We do not expect however to findan exact solution
for our instance.

5.8.2 Model 0

As already mentioned above we implemented Model 0 using the OPL Modeling
language [71]. The model can be found in Appendix A.2. On a toyinstance
with 14 nodes, 24 edges and 11 shipments we did not get any feasible solution
on Machine B (see Appendix A.1) in 40 hours. This result can beseen as a
justification to develop and implement more involved approaches like Model 1
and 2.
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Table 5.2: Parameter settings for Model 1
Lmax Dmax TH

shunt T S
couple v̄

25 cars 288km 15min 8min 90 km/h

5.8.3 Model 1

We implemented Model 1 using SYMPHONY 5, a branch and cut framework
by Ralphs et al. [106]. We used CPLEX 9 as LP solver for SYMPHONY, and
LEDA 4.5 for computing the minimum spanning trees and the assignment prob-
lems.

TRP Instance

Out of the SBB Cargo data we extracted theX- and theY -instance for the TRP.
The complete data set is confidential but we will discuss the most important prop-
erties here. We set the parameters to the values show in Table5.2.

The settinḡv = 90km/h overestimates the actual speed of the freight trains,
as we found out later. To produce the aggregated set of shipments we aggregated
in a first step all shipments with identical source for theX-instance and all ship-
ments with identical destination for theY -instance. This aggregation turns out
to be too drastic, as it produces shipments that exceed the maximum train load.
Therefore, in a second step we undid some of the aggregations. This was done
by hand in cooperation with the SBB Cargo planners, as various rules apply as
to when two shipments are usually taken together. This led usto anX-instance
on a nearly complete graph with 33 nodes and 40 shipments and aY -instance on
a nearly complete graph with 34 nodes and 44 shipments. We setthe size of the
train fleet to 24.

TRP solution

As the train fleet is fixed we can express the solution cost in kilometers. The
distances include a “kilometer equivalent” of 12km for eachpickup at a station.
We carried out our experiments on Machine A (see Appendix A.1). For theX-
instance it took our optimization code 30 minutes to find the first feasible solution
of cost 2510km, after 5 hours it found the best solution of cost 2280km before
we stopped the calculation after 26 hours. At this point the lower bound certified
that our best solution is at most 17% off the optimal solution. For theY -instance
the solution time was 130 minutes for the first feasible solution of cost 3363km.
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The best solution found has cost 3197km and is 33% above the lower bound after
63 hours. Compared to our experience with Model 0 and other similar models
this means that the decomposition allows us to simplify the routing part in such a
way that we can find solutions to comparatively big instancesin reasonable time.

5.8.4 TSSP Instance and Overall Solution

The two solutions to the TRP that we found constitute the input to the TSSP.
With the actual time windows of SBB Cargo they constitute an infeasible in-
stance for the TSSP because there are 4X-routes that arrive afterY -routes that
depend on them depart. At this point, the drawback of the decomposition be-
comes clear. To overcome this problem we chose the second best Y -solution that
was found (cost 3452km), which reduced the number of incompatible trains to
1. We then analyzed the solution pair by hand and solved the last incompatibility
by forbidding two track segments in theX-instance. This lead to a solution to
theX-instance of cost 2440km. It follows that in our model the overall cost of
this solution is 30892, which is well below the costs of the hand-made solutions.
However the problem with this (partial) solution arises from the TSSP instance
that it represents: The resulting TSSP instance could be solved in a few minutes
on Machine A (see Appendix A.1). The necessary hub-capacityis 252. This high
value is unrealistic for the size of the actual shunting yardof the SBB network.
One reason that it is so high is that we tried to integrate mostof the shipments
that are currently transported by direct trains into the hub-spoke system. A sec-
ond reason is that our decomposition approach only considers the hub-capacity
in the second step and ignores it for the TRP.

In order to partially overcome such problems we integrated alimited inter-
activity into our model that would allow the planner to forbid or fix edges. We
used this mode to obtain the “hand-optimized” solution above. It allows the plan-
ner to incorporate to some degree external constraints intothe model that are not
present in the formulation.

To sum up, we were able to find a semi-realistic solution to theone-hub
problem but also hit the limits of this decomposition approach. The experience
with this model (together with SBB’s migration to a multi-hub system) motivated
us to develop the column generation model.

5.8.5 Model 2

We implemented Model 2 using the SCIP library by Achterberg [3]. We are the
first to use SCIP for a column generation approach.
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Table 5.3: Parameter settings for Model 2
Lmax TH

shunt T S
couple v̄ caph

25 cars 54min 27min 60 km/h 100

Preliminary results

In this section we report on some preliminary results of Model 2.

First, the full instance, on which the CG approach works, is considerably
larger than the aggregated instances for the TRP. We run our instances with para-
meters that we partly rechecked with the SBB cargo planners and set to conserv-
ative values, see Table 5.3.

Moreover, we allow to use an additional hub now, as intended by the SBB
planners. With our current implementation we reach the tailing-off phase in the
root node of the branch and price tree after a calculation time of around three
days on Machine C (see Appendix A.1). At this time the value ofthe relaxation
is 20525, the value of the dual bound via Lemma 4.8 is 15920.

The dive and fix heuristic of Section 5.6.4 finds an integral solution of cost
34861. This value emphasizes the quality of our solution in the model, if we
compare it to the values around 50000 of the hand-made solutions. It is important
to point out here that the hand-made solution is for a single hub, whereas we
allow to use two hubs. In general, it is too early to conclude that our solution is
superior to the hand-made ones even if the objective values are promising. This
has to be verified in cooperation with the SBB planners.

5.9 Related Work

The full problem that we modeled in this chapter and attackedfrom different
angles is special enough to be new in the sense that it has never been studied
before in the literature. On the other hand, some of its components and related
problems have received considerable attention in the literature.

As for the routing part, the TRP defined in this chapter can be seen as a spe-
cial vehicle routing problem. The vehicle routing problem (VRP) itself has been
studied in many variants, see the book edited by Toth and Vigo[124] for a sur-
vey or the annotated bibliography by Laporte [84]. As we saw in Section 5.5.3,
the TRP can be transformed to a DCVRP problem. Among the VRP problems
DCVRP has received comparatively little attention. Most ofthe publications of
exact algorithms date back to the 80ies [27, 85, 86]. There are several implemen-
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tations for the general vehicle routing problem, commercial as well as free ones,
see [70, 105] a survey. One of the few free and open ones is the code by Ralphs
et al. [107], on which we base the implementation of Model 1. Ralphs’ imple-
mentation is itself based on his SYMPHONY branch and cut framework [106].
Another branch and cut implementation for the vehicle routing problem is by
Blasum and Hochstättler [16].

Column Generation plays a prominent role for vehicle routing problems,
see [46, 117, 19] for a survey.

There are several publications related to the shunting of trains [89, 125].
However, most of these refer to a different problem, the shunting of unused
passenger trains that are parked in a shunting yard and undergo cleaning and
maintenance checks there. This setting is completely different from ours. In [15]
the authors consider the shunting of trams in the morning which also differs from
shunting freight trains. In [88] shunting without a hump in adifferent model
is considered. In [39, 40] the authors model a problem that issimilar to ours.
However, they do not consider the dynamic aspect and only partly the capac-
ity restriction. Their algorithm can be understood as one ofthe black-box static
shunting algorithms used in Section 5.7.3.

The paper by van Wezel and Riezenbos [125] also discusses whyso many
planning tasks in railway optimization are still performedby hand in spite of
numerous optimization efforts in the Algorithms and Operations Research com-
munity. They come to the conclusion that apart from the quality of the mathe-
matical model itself, also robustness and flexibility issues, software engineering
problems, and psychological questions play an important role.

5.10 Summary of Results

In this chapter we have seen how a sequence of models has been developed to
capture an involved scheduling and routing problem. From a practical point of
view, this seems to be a typical phenomenon: Rather than developing the ideal
model in one shot it often takes some iterations and feedbackcycles to come up
with a useful model. The promising results of the column generation approach
suggest that indeed the practical applicability of our approach is in reach.

On the theoretical side we have shown how the mincut-linear arrangement
problem, one of the showcase problems for the application ofdivide-and-conquer
in approximation algorithms [116], is at the core of the sequencing problem at the
hub. Furthermore, we have provided an exact solution to a scheduling problem
that is inspired by the shunting operation at the hub.
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The results of this chapter that cover Model 0 and 1 are joint work with
Michael Gatto. The theoretical results from Section 5.7 arejoint work with
Michael Gatto and Riko Jacob. The implementation of Model 2 is at the time
of writing this thesis an ongoing project with Tobias Achterberg, Alberto Ce-
selli, Michael Gatto, Marco E. Lübbecke, and Heiko Schilling. The topics of this
chapter will also be covered with a different focus in the dissertation of Michael
Gatto.

5.11 Open Problems

There is a multitude of problems connected to the topics of this chapter that can
be the subject of further research. Apart from the further development of math-
ematical models and the application of advanced column generation techniques
for the train routing problem, also algorithms that consider the exact shunting
operations at a hub are interesting. As already mentioned this is a challenging
task because shunting yards differ in their exact layout andtheir way of opera-
tion. Furthermore, we have not considered the engine driverassignment at all.
Finally, also robustness issues are an important aspect, which can lead to inter-
esting variations of the problems presented here.
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OVSF Code Assignment

Morpheus: “What can you see, Neo?”
Neo: “It’s strange... the code is somehow different...”
(from The Matrix, Reloaded)

6.1 Introduction

In the last years the field of telecommunications has raised amultitude of inter-
esting new algorithmic questions. In this chapter we treat acode reassignment
problem that arises in the Wideband Code Division Multiple Access method (W-
CDMA) of the Universal Mobile Telecommunications System (UMTS, for more
details see [74, 83]). More precisely, we focus on its multiple access method
Direct Sequence Code Division Multiple Access (DS-CDMA). The purpose of
this access method is to enable all users in one cell to share the common re-
source, i.e., the bandwidth. In DS-CDMA this is accomplished by a spreading
and scrambling operation. Here we are interested in the spreading operation that
spreads the signal and separates the transmissions from thebase-station to the
different users. More precisely, we consider spreading by Orthogonal Variable
Spreading Factor (OVSF-) codes [4, 74], which are used on thedownlink (from
the base station to the user) and the dedicated channel (usedfor special signaling)
of the uplink (from user to base station). These codes are derived from a code
tree. The OVSF-code tree is a complete binary tree of heighth that is constructed
in the following way: The root is labeled with the vector(1), the left child of a
node labeleda is labeled with(a, a), and the right child with(a,−a). Each user
in one cell is assigned a different OVSF-code. The key property that separates the

107
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signals sent to the users is themutual orthogonalityof the users’ codes. All as-
signed codes are mutually orthogonal if and only if there is at most one assigned
code on each root-to-leaf path. In DS-CDMA users request different data rates
and get OVSF-codes of different levels. The data rate is inversely proportional
to the length of the code. In particular, it is irrelevant which code on a level a
user gets, as long as all assigned codes are mutually orthogonal. We say that an
assigned code in any node in the treeblocksall codes in the subtree rooted at that
node and all codes on the path to the root, see Figure 6.1.1 foran illustration.

(a)

(a,-a)(a,a)

N leaves

height h

assigned code blocked code

level bandwidth

0

1

2

3

1

2

4

8

Figure 6.1.1:A code assignment and blocked codes.

As users connect to and disconnect from a given base station,i.e., request
and release codes, the code tree can get fragmented. It can happen that a code
request for a higher level cannot be served at all because lower level codes block
all codes on this level. For example, in Figure 6.1.1 no code can be inserted on
level two without reassigning another code, even though there is enough available
bandwidth. This problem is known ascode blockingor code-tree fragmentation
[83, 93]. One way of solving this problem is to reassign some codes in the tree
(more precisely, to assign different OVSF-codes of the samelevel to some users
in the cell). In Figure 6.1.2 some user requests a code on level two, where all
codes are blocked. Still, after reassigning some of the already assigned codes as
indicated by the dashed arrows, the request can be served. Here and in many of
the following figures, we only depict the relevant parts (subtrees) of the single
code tree.

The process of reassigning codes necessarily induces signaling overhead from
the base station to the users whose codes change. This overhead should be kept
small. Therefore, a natural objective already stated in [93, 109] is to serve all
code requests as long as this is possible, while keeping the number of reassign-
ments as small as possible. As long as the total bandwidth of all simultaneously
active code requests does not exceed the total bandwidth, itis always possible to
serve them. The problem has been studied before with a focus on simulations.
In [93] the problem of reassigning the codes for a single additional request is
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request for code on level 2level

0

1

2

Figure 6.1.2:A code insertion on level 2 into a single code treeT , shown without
the top levels.

introduced. The Dynamic Code Assignment (DCA) algorithm presented in [93]
is claimed to be optimal. We prove that this algorithm is not always optimal and
analyze natural versions of the underlying code assignment(CA) problem. Our
intention is to present a rigorous analysis of this problem.

6.1.1 Related Work

It was a paper by Minn and Siu [93] that originally drew our attention to this
problem. The one-step offline code assignment problem is defined together with
an algorithm that is claimed to solve it optimally [93]. As weshow in Section
6.3.1, this claim is not correct. Many of the follow-up papers like [9, 22, 24,
60, 61, 78, 109] acknowledge the original problem to be solved by Minn and Siu
and study some other aspects of it. Assarut et al. [9] evaluate the performance
of Minn and Siu’s DCA-algorithm, and compare it to other schemes. Moreover,
they propose a different algorithm for a more restricted setting [8]. Others use
additional mechanisms like time multiplexing or code sharing on top of the orig-
inal problem setting in order to mitigate the code blocking problem [22, 109].
A different direction is to use a heuristic approach that solves the problem for
small input instances [22]. Kam, Minn and Siu [78] address the problem in the
context of bursty traffic and different Quality of Service (QoS). They come up
with a notion of “fairness” and also propose to use multiplexing. Priority based
schemes for different QoS classes can be found in [25], similar in perspective are
[60, 61].

Fantacci and Nannicini [55] are among the first to express theproblem in its
online version, although they have quite a different focus.They present a scheme
that is similar to the compact representation scheme in Section 6.5, without fo-
cusing on the number of reassignments. Rouskas and Skoutas [109] propose a
greedy online-algorithm that minimizes, in each step, the number of addition-
ally blocked codes, and provide simulation results but no analysis. Chen and
Chen [26] propose a best-fit least-recently used approach, also without analysis.
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After our first publication on OVSF code assignment [50] somemore results
were found. Tomamichel [121] shows that the general offline CA problem is NP-
complete and there exist instances of code trees for which any optimal offline
greedy algorithm needs to reassign more than one code per insertion/deletion
request.

6.1.2 Model and Notation

We consider the combinatorial problem of assigning codes tousers. The codes
are the nodes of an (OVSF-) code treeT = (V,E). HereT is a complete binary
tree of heighth. The set of all users using a code at a given moment in time can
be modeled by arequest vectorr = (r0 . . . rh) ∈ Nh+1, whereri is the number
of users requesting a code on leveli (with bandwidth2i). The levels of the tree
are counted from the leaves to the root starting at level 0. The level of nodev is
denoted byl(v).

Each request is assigned to a position (node) in the tree, such that for all
levelsi ∈ {0 . . . h} there are exactlyri codes on leveli. Moreover, on every
pathpj from a leafj to the root there is at most one code assigned. We call
every set of positionsF ⊂ V in the treeT that fulfills these properties acode
assignment. If we want to emphasize the feasibility ofF ⊂ V we also use the
term feasible code assignment. For ease of presentation we denote the set of
codesbyF . Throughout this chapter, a code tree is the tree together with a code
assignmentF . If a user connects to the base station, the resulting additional
request for a code represents acode insertion(on a given level). If some user
disconnects, this represents adeletion(at a given position). A new request is
dropped if it cannot be served. This is the case if its acceptance would exceed the
total bandwidth. ByN we denote the number of leaves ofT and byn the number
of assigned codesn = |F | ≤ N . After an insertion on levellt at timet, any CA-
algorithm must change the code assignmentFt into Ft+1 for the new request
vectorr′ = (r0, . . . , rlt + 1, . . . , rh). The size|Ft+1 \ Ft| corresponds to the
number ofreassignments. This implies that for an insertion, the new assignment
is counted as a reassignment. We define the number of reassignments as the cost
function. Deletions are not considered in the cost function. They are charged to
the insertions. We can do that without any asymptotic overhead since every code
can be deleted at most once. When we want to emphasize the combinatorial side
of the problem we call a reassignment amovementof a code. A maximal subtree
of unblocked codes is called agap tree(cf. Figure 6.5.6 (a) in Section 6.5).

We state the original CA problem studied by Minn and Siu together with
some of its natural variants:
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one-step offline CA Given a code assignmentF for a request vectorr in an
OVSF code treeT and a code request for levell. Find a code assignment
F ′ for the new request vectorr′ = (r0, . . . , rl + 1, . . . , rh) with minimum
number of reassignments.

general offline CA Given a sequenceS of code insertions and deletions of
lengthm. Find a sequence of code assignments in an OVSF code tree
T such that the total number of reassignments is minimum, assuming the
initial code tree is empty.

online CA The code insertion and deletion requests are served as they arrive
without knowledge of the future requests. The cost functionis again the
total number of reassignments over the whole request sequence.

insertion-only online CA This is the online CA with insertions only.

6.1.3 Summary of Results

The results presented in this chapter are joint work with Thomas Erlebach, Riko
Jacob, Matúš Mihal’ák, Gábor Szabó and Peter Widmayer. As already discussed
in the introduction, it is not always easy to divide the work done together and
we do not want to lose in readability by leaving out some of therelevant results.
An extended abstract of these results is presented in [53], and has and will be
presented with different focus in the theses of Gábor Szab´o [120] and Matúš
Mihaľ́ak.

This chapter consists of two main parts: One on the one-step offline CA and
one on the online CA. These parts are preceded by a section, inwhich we discuss
some general properties of the problems.

In the first part we begin with a counter-example to the DCA-algorithm. We
proceed with an NP-completeness proof in Section 6.3.2. This result is my main
contribution to this chapter. In Section 6.3.3 we present anexact algorithm for
one-step offline CA with a running time that is exponential inthe heighth of
the tree. We show that a natural greedy algorithm already mentioned in [93]
achieves approximation ratioh. The involved proof of this result will appear in
the thesis of Matúš Mihal’ák. Finally, we consider the fixed parameter tractability
of one-step offline CA.

In the second part we tackle the online-problem. It is a more natural version
of the problem, because we are interested in minimizing the signaling overhead
over a sequence of operations rather than for a single operation only.

We present aΘ(h)-competitive algorithm and show that the greedy strat-
egy that minimizes the number of reassignments in every stepis not better than
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Ω(h)-competitive in the worst case. This means that even an optimal algorithm
for one-step CA, which solves an NP-complete problem in every step, is only
Ω(h) competitive. Also another strategy proposed in the literature delivers no
more thanΩ(h)-competitiveness but is optimal in an insertion only scenario, as
we show in Section 6.5.3. Finally, we sketch an online-algorithm with constant
competitive ratio that uses resource augmentation, where we give its code tree
one more level than the adversary. The details of this algorithm can be found in
the thesis of Gábor Szabó [120] and in [53].
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Figure 6.2.1:Correspondence of code assignments in tree of height4 with codes
on levels{0,1,1,1,2} and prefix free codes of lengths{4,3,3,3,2}

6.2 Properties of OVSF Code Assignment

In this section we present important properties of the OVSF code assignment
problem that are relevant for the understanding of the following sections.

6.2.1 Feasibility

One might ask whether there always exists a feasible code assignment for a new
code request. We present the necessary conditions for a feasible code assignment.
In later sections we will always assume that a code assignment is possible for the
current set of codes.

Given an assignmentF of n codes in an OVSF code treeT according to the
request vectorr = (r0, . . . , rh) and a new code request on levelli, the ques-
tion is whether a code assignmentF ′ exists for the new request vectorr′ =
(r0, . . . , rli + 1, . . . , rh). Every assigned code on levell has its unique path
from the root to a node of lengthh − l. The path can be encoded by a word
w ∈ {0, 1}h−l that describes the left/right decisions on this path. The orthogo-
nality property amounts to demanding that these words form abinary prefix free
code. Given a prefix free code setCpf with code lengths{h− l1, . . . , h− ln+1}
(whereli is the level of codei ∈ {1, . . . , n+ 1}) we can clearly assign codes on
levelsli by following the paths described by the code words inCpf (see Figure
6.2.1). This shows that a code assignmentF ′ for codes on levelsl1, . . . , ln+1 ex-
ists if and only if there exists a binary prefix free code set ofgiven code lengths
{h− l1, . . . , h− ln+1}.

We use the Kraft-McMillan inequality to check the existenceof a prefix free
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code set of given code lengths.

Theorem 6.1 [5] A binary prefix free code set with code lengthsa1, . . . , am ex-
ists if and only if

m∑

i=1

2−ai ≤ 1. (6.2.1)

If we multiply Equation (6.2.1) by2h and we consider the number of codes
rli that are requested on levelli we get the following corollary.

Corollary 6.2 Given an OVSF code treeT of heighth withN = 2h leaves and
a request vectorr = (r0, . . . , rh) a feasible code assignment exists if and only if

h∑

i=0

ri · 2
i ≤ N .

Corollary 6.2 shows that checking the existence of a feasible code assignment
given the request vector can be done in linear time.

6.2.2 Irrelevance of Higher Level Codes

We show that an optimal algorithm for the one-step CA problemmoves only
codes on levels lower than the requested levellr. A similar result was already
given in [93]. In [93] the authors mention without proof thatthe optimal algo-
rithm does not need to move codes on higher levels than the requested level. We
give the proof of a similar statement here.

Lemma 6.3 Let c be an insertion on levellr into a code treeT . Then for every
code reassignmentF ′ that insertsc and that moves a code on levell ≥ lr there
exists a code reassignmentF ′′ that insertsc and moves fewer codes, i.e., with
|F ′′ \ F | < |F ′ \ F |.

Proof. Let x ∈ F be the highest code that is reassigned byF ′ on a level above
the levellr and letS denote the set of codes moved byF ′ into the subtreeTx

rooted at nodex. We denote byR the rest of the codes that are moved byF ′ (see
Figure 6.2.2). The cost ofF ′ is |S|+ |R|. The code reassignmentF ′′ is defined
as follows: lety be the position whereF ′ moves the codex, thenF ′′ will move
the codes inS into the subtreeTy rooted aty and leave the codex in Tx and
move the rest of the codes inR in the same way asF ′. The cost ofF ′′ is at least
one less than the cost ofF ′ since it does not move the codex. In Figure 6.2.2 the
cost ofF ′ is 6 and the cost ofF ′′ is 5. �
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Figure 6.2.2:Non-optimality of a code assignmentF ′ that reassigns codes also
on higher levels than the requested level.
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6.3 One-Step Offline CA

In this section we present results for the one-step CA problem.

6.3.1 Non-Optimality of Greedy Algorithms

First we look at possible greedy algorithms for the one-stepoffline CA. A straight-
forward greedy approach is to select for a code insertion a subtree with minimum
cost that is not blocked by a code above the requested level, according to some
cost function. All codes in the selected subtree must then bereassigned. So in
every step a top-down greedy algorithm chooses the maximum bandwidth code
that has to be reassigned, places it at the root of a minimum cost subtree, takes out
the codes in that subtree and proceeds recursively. The DCA-algorithm in [93]
works in this way. The authors propose different cost functions, among which
the “topology search” cost function is claimed to solve the one-step offline CA
optimally. Here we show the following theorem:

Theorem 6.4 Any top-down greedy algorithmAtdg depending only on the cur-
rent assignment of the considered subtree is not optimal.

As all proposed cost functions in [93] depend only on the current assignment
of the considered subtree, this theorem implies the non-optimality of the DCA-
algorithm.

Proof. Our construction considers the subtrees in Figure 6.3.1 andthe assign-
ment of a new code to the root of the treeT0. The rest of the subtrees that are not
shown are supposed to be fully assigned with codes on the leaflevel, so that no
optimal algorithm moves codes into those subtrees. TreeT0 has a code of band-
width 2k on levell and depending on the cost function has or does not have a
code with bandwidthk on levell−1. The subtreeT1 containsk−1 codes at leaf
level and the rest of the subtree is empty. The subtreesT2 andT3 containk codes
at leaf level interleaved withk free leaves. As we will show in Corollary 6.9 any
optimal one-step algorithm can be forced to produce such an assignment. This
original assignment rules out all cost functions that do notput the initial code at
the root ofT0. We are left with two cases:

case 1: The cost function evaluatesT2 andT3 as cheaper thanT1. In this case
we let the subtreeT0 contain only the code with bandwidth2k. Algorithm
Atdg reassigns the code with bandwidth2k to the root of the subtreeT2 or
T3, which causes one more reassignment than assigning it to theroot of
T1, hence the algorithm fails to produce the optimal solution.
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Figure 6.3.1:Example for the proof of Theorem 6.4.

case 2: The cost function evaluatesT1 as cheaper thanT2 andT3. In this case we
let the subtreeT0 have both codes.Atdg moves the code with bandwidth2k
to the root ofT1 and the code with bandwidthk into the treeT2 or T3, see
solid lines in Figure 6.3.1. The number of reassigned codes is 3k/2 + 2.
But the minimum number of reassignments isk + 3, which is achieved
when the code with bandwidthk is moved in the empty part ofT1 and the
code with bandwidth2k is moved to the root ofT2 or T3, see dashed lines
in Figure 6.3.1.

�

6.3.2 NP-Hardness

We prove the decision variant of the one-step offline CA to be NP-complete. The
canonical decision variant of it is to decide whether a new code insertion can be
handled with cost less or equal to a numbercmax, which is also part of the input.
First of all, we note that the decision-variant is in NP, because we can guess an
optimal assignment and verify in polynomial time if it is feasible and if its cost
is lower or equal tocmax. The NP-completeness is established by a reduction
from the three-dimensional matching problem (3DM) that we restate here for
completeness (cf. [62]):

Problem 6.5 (3DM) Given a setM ⊆ W × X × Y , whereW,X andY are
disjoint sets having the same numberq of elements. DoesM contain a perfect
matching, i.e., a subsetM ′ ⊆M such that|M ′| = q and no two elements ofM ′

agree in any coordinate?
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q

triplet
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receiver
trees

fill trees

· · · · · ·token tree

code request
for this level

Figure 6.3.2:Sketch of the construction

Let the elements of the ground setsW,X, Y be indexed from1 to q. To simplify
the presentation, we introduce theindicator vectorof a triplet (wi, xj , yk) as a
zero-one vector of length3q that is all zero except at the indicesi, q+j and2q+k.
The idea of the reduction is to view the triplets as such indicator vectors and to
observe that the problem 3DM is equivalent to finding a subsetof q indicator
vectors out of the indicator vectors inM that sum up to the all-one vector.

Figure 6.3.2 shows an outline of the construction that we usefor the reduc-
tion. An input to 3DM is transformed into an initial feasibleassignment that
consists of a token tree on the left side and different smaller trees on the right.
A code insertion request is given at the level indicated in the figure. The con-
struction is set up in such a way that the code must be assignedto the root of
the left tree, thetoken tree, in order to minimize the number of reassignments.
Similarly, theq codes that are forced to move from the left to the right tree must
be assigned to the roots oftriplet trees. The choice of theq triplet trees reflects
the choice of the corresponding triplets of a matching. All codes in the chosen
triplet trees find a place without any additional reassignment if and only if these
triplets really represent a 3D matching.

Let us now look into the details of the construction. The token tree consists
of q codes positioned arbitrarily on levellstart with sufficient depth, for example
depth

⌈
log(|M |+ 21q2 + q)

⌉
+ 1. The triplet trees have their roots on the same

level lstart. They are constructed from the indicator vectors of the triplets. For
each of the3q positions of the vector such a tree has four levels – togethercalled
a layer – that encode either zero or one, where the encodings of zero and one are
shown in Figure 6.3.3 (a) and (b). Figures 6.3.3 (c) and (d) show how layers are
stacked usingsibling trees(the sibling tree of a zero-tree is identical to that of a
one-tree shown in the figure). We have chosen the zero-trees and one-trees such
that both have the same number of codes and occupy the same bandwidth, but
are still different.
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(a) The zero-tree (b) The one-tree (c) A layer, consisting of a one-tree and its
sibling

0000

0000

1

(d) Stacking lay-
ers

Figure 6.3.3:Encoding of zero and one

The receiver trees are supposed to receive all codes in the chosen triplet trees.
These codes fit exactly in the free positions, if and only if the chosen triplets
form a 3DM, i.e., if their indicator vectors sum up to the all-one vector. This
equivalence directly tells us, how many codes the trees mustreceive on which
level: On every layer the receiver trees must takeq − 1 zero-trees,1 one-tree
andq sibling-trees, so that on the four levels of each layer theremust be exactly
0, q + 1, 5q − 3 resp.q + 2 free codes (plusq extra codes on the very last level).
For each one of these3q · 7q + q = 21q2 + q codes we build one receiver tree.
The receiver tree for a code on levell′ is a tree with root on levellstart with the
following properties. It has one free position on levell′, the rest of the tree is full
and it contains21q+2 codes, i.e., one more code than a triplet tree. Clearly, such
a tree always exists in our situation.

Finally, the fill trees are trees that are completely full andhave one more code
than the receiver trees. They fill up the levellstart in the sibling-tree of the token
tree.

An interesting question is, whether this transformation from 3DM to the one-
step offline CA can be done in polynomial time. This depends onthe input
encoding of our problem. We consider the following natural encodings:

• a zero-one vector that specifies for every node of the tree whether there is
a code or not,
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• a sparse representation of the tree, consisting only of the positions of the
assigned codes.

Obviously, the transformation cannot be done in polynomialtime for the first
input encoding, because the generated tree has212q+lstart leaves. For the second
input encoding the transformation is polynomial, because the total number of
generated codes is polynomial inq, which is polynomial in the input size of 3DM.
Besides, we should rather not expect an NP-completeness proof for the first input
encoding, because this would suggest—together with the dynamic programming
algorithm in this paper—nO(log n)-algorithms for all problems in NP.

We now state the crucial property of the construction in a lemma:

Lemma 6.6 LetM be an input for3DM andφ the transformation described
above. ThenM ∈ 3DM if and only ifφ(M) can be done withα = 21q2+2q+1
reassignments.

Proof. Assume there is a 3DMM ′ ⊂ M . Now consider the reassignment that
assigns the code insertion to the root of the token tree, and the tokens to theq
roots of the triplet trees that correspond to the triplets inM ′. We know that the
corresponding indicator vectors sum up to the all-one vector, so that all codes in
the triplet trees that need to be reassigned fit exactly in thereceiver trees. In total,
1 + q + (21q + 1)q = α codes are (re-)assigned.

Now assume there is no matching. This implies that every subset of q indi-
cator vectors does not sum up to the all-one vector. Assume for a contradiction
that we can still serveφ(M) with at mostα reassignments. Clearly, the initial
code insertion must be assigned to the left tree, otherwise we need too many
reassignments. Theq tokens must not trigger more than(21q + 1)q additional
reassignments. This is only possible if they are all assigned to triplet trees, which
triggers exactly(21q+1)q necessary reassignments. Now no more reassignments
are allowed. But we know that the correspondingq indicator vectors do not sum
up to the all-one vector, in particular, there must be one position that sums up to
zero. In the layer of this position the receiver-trees receive q zero-trees and no
one-tree instead ofq − 1 zero trees and one one-tree. But by construction the
extra zero-tree cannot be assigned to the remaining receiver trees of the one-tree.
It cannot be assigned somewhere else either, because this would cause an extra
reassignment on a different layer. This is why an extra reassignment is needed,
which brings the total number of (re-)assignments aboveα. �

One could wonder whether an optimal one-step offline CA algorithm can ever
attain the configuration that we construct for the transformation. We prove below
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in Corollary 6.9 that we can force such an algorithm into any configuration. To
sum up, we have shown the following theorem:

Theorem 6.7 The decision variant of the one-step offline CA is NP-complete for
an input given by a list of positions of the assigned codes andthe code insertion
level.

Enforcing arbitrary configurations We show that for any configurationC′

and any optimal one-step algorithmA there exists a sequence of code insertions
and deletions of polynomial length, so thatA ends up inC′ on that sequence.
Notice that any optimal one-step algorithm reassigns codesonly if it has to, i.e.,
it places a code without any additional reassignments if this is possible, and it
does not reassign after a deletion. The result even applies to any algorithmA
with these properties.

We start with the empty configurationC0. The idea of the proof is to take a
detour and first attain a full-capacity configurationCfull and then go from there to
C′. The second step is easy: It suffices to delete all the codes inCfull that are not
in C′; A must not do any reassignments during these deletions. First, we show
that we can forceA to produce an arbitrarily chosen configurationCfull that uses
the full tree capacity.

Theorem 6.8 Any one-step optimal algorithmA can be led to an arbitrary full
configurationCfull with n assigned codes by a request sequence of lengthm <
3n.

Proof. Recall thath denotes the height of the code tree. We proceed top-down:
On every levell′ with codes inCfull we first fill all its unblocked positions using
at most2h−l′ code insertions on levell′. A just fills l′ with codes. Then we delete
all codes onl′ that are not inCfull and proceed recursively on the next level.

We have to argue that we do not insert too many codes in this process. To
see this, observe that we only insert and delete codes above then codes inCfull,
and we do this at most once in every node. Now if we consider thebinary tree
the leaves of which are the codes inCfull, then we see that the number of insert
operation is bounded byn+ n− 1, wheren− 1 is the number of inner nodes of
this tree. Together with the deletions we obtain the statement. �

We come back to arbitrary configurations.

Corollary 6.9 Given a configuration treeC′ of heighth with n assigned codes,
there exists a sequenceσ1, . . . , σm of code insertions and deletions of length
m < 4nh that forcesA intoC′.
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Figure 6.3.4:Node signatures.

Proof. We defineCfull fromC′ by filling the gap trees inC′ (as high as possible)
with codes. Each code causes at most one gap tree on every level, hence we need
at mosth codes to fill the gap trees for one code. Altogether, we need atmostnh
codes to fill all gap trees. According to Theorem 6.8, we can construct a sequence
of lengthm < 3nh that forcesA into Cfull. Then we delete the padding codes
and end up inC′. Altogether we need at most4nh requests for code insertion
and deletion. �

6.3.3 ExactnO(h) Algorithm

In this section we solve the one-step offline CA problem optimally using a dy-
namic programming approach. The key idea of the resulting algorithm is to store
the right information in the nodes of the tree and to build it up in a bottom-up
fashion.

To make this construction precise, we define asignatureof a subtreeTv with
root v as anl(v) + 1-dimensional vectorsv = (sv

0 , . . . , s
v
l(v)), in which sv

i is
the number of codes inTv on leveli, see Figure 6.3.4. A signatures is feasible
if there exists a subtreeTv with a feasible code assignment that has signatures.
The information stored in every nodev of the tree consists of a table, in which all
possible feasible signatures of an arbitrary tree of heightl(v) are stored together
with theircost forTv. Here the cost of such a signatures for Tv (usuallys 6= sv)
is defined as the minimum number of codes inTv that have to move away from
their old position in order to attain some treeT ′

v with signatures. To attainT ′
v it

can be necessary to also move intoTv codes from other subtrees but we do not
count these movements for the cost ofs for Tv.

Given a code treeT with all these tables computed, one can compute the
cost of any single code insertion from the table at the root node r: Let sr =
(sr

0, . . . , s
r
h) be the signature of the whole code tree before insertion, then the
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cost of an insertion at levell is the cost of the signature(sr
0, . . . , s

r
l + 1, . . . , sr

h)
in this table plus one. This follows because the minimum number of codes that
are moved away from their positions inT is equal to the number of reassignments
minus one.

The computation of the tables starts at the leaf level, wherethe cost of the
one-dimensional signatures is trivially defined. At any node v of level l(v) the
costc(v, s) of signatures for Tv is computed from the cost incurred in the left
subtreeTl of v plus the cost incurred in the right subtreeTr plus the cost atv.
The costsc(l, s′) andc(r, s′′) in the subtrees come from two feasible signatures
with the propertys = (s′0 +s′′0 , . . . , s

′
l(v)−1 +s′′l(v)−1, sl(v)). Any pair(s′, s′′) of

such signatures corresponds to a possible configuration after the code insertion.
The best pair for nodev givesc(v, s). Let sv = (sv

0 , . . . , s
v
l(v)) be the signature

of Tv, then it holds that

c(v, s) =







c(l, (0, . . . , 0)) + c(r, (0, . . . , 0)) for sl(v) = 1
min{s′,s′′|(s′,0)+(s′′,0)=s}

(c(l, s′) + c(r, s′′)) for sl(v) = 0, sv
l(v) = 0

1 for sl(v) = 0, sv
l(v) = 1 .

The costs of all signaturess for v can be calculated simultaneously by com-
bining the two tables in the left and right children ofv. Observe for the running
time that the number of feasible signatures is bounded by(n+1)h because there
cannot be more thann codes on any level. The time to combine two tables is
O(n2h), thus the total running time is bounded byO(2h · n2h).

Theorem 6.10 The one-step offline CA can be optimally solved in timeO(2h ·
n2h) and spaceO(h · nh).

6.3.4 h-Approximation Algorithm

In this section we propose and analyze a greedy algorithm forone-step offline
CA, i.e., for the problem of assigning an initial code insertion c0 into a code
treeT with given code assignmentF . The idea of the greedy algorithmAgreedy

is to assign the codec0 to the rootg of the subtreeTg that contains the fewest
assigned codes among all possible subtrees. From Lemma 6.3 we know that no
optimal algorithm reassigns codes on higher levels than thecurrent one; hence the
possible subtrees are those that do not contain assigned codes on or above their
root. Then the greedy algorithm takes all codes inTg (denoted byΓ(Tg)) and
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reassigns them recursively in the same way, always processing codes of higher
level first.

At every timet algorithmAgreedy has to assign a setCt of codes into the
current treeT t. Initially, C0 = {c0} andT 0 = T . For a given position, code or
code insertionc, its level is denoted byl(c).

Algorithm 6 : Agreedy

C0 ← {c0}; T 0 ←− T
t←− 0
while Ct 6= ∅ do

ct ←− element with highest level inCt

g ←− the root of a subtreeT t
g of level l(ct) with

the fewest codes in it and no code on or above its root
// assignct to positiong
T t+1 ←− (T t \ Γ(T t

g)) ∪ {g}
Ct+1 ←− (Ct ∪ Γ(T t

g)) \ {ct}
t←− t+ 1

end

In [93] a similar algorithm is proposed as a heuristic for one-step offline
CA. We prove thatAgreedyhas approximation ratioh. This bound is asymptoti-
cally tight: In the following examples we show thatAgreedycan be forced to use
Ω(h) ·OPT (re-)assignments (see Figure 6.3.5), where OPT refers to the optimal
number of (re-)assignments. A new codecnew is assigned byAgreedy to the root
of T0 (which contains the least number of codes). The two codes on level l − 1
from T0 are reassigned as shown in the figure, one code can be reassigned into
Topt and the other one goes recursively intoT1. In total,Agreedydoes2 · l+ 1 (re-
)assignments while the optimal algorithm assignscnew into the root ofTopt and
reassigns the three codes from the leaf level into the treesT1, T2, T3, requiring
only 4 (re-)assignments. Obviously, for this exampleAgreedy is not better than
(2l+ 1)/4 times the optimal. In general,l can beΩ(h).

For the upper bound we compareAgreedy to the optimal algorithmAopt. Aopt

assignsc0 to the root of a subtreeTx0 , the codes fromTx0 to some other subtrees,
and so on. Let us call the set of subtrees to the root of whichAopt moves codes
theopt-trees, denoted byTopt, and the arcs that show howAopt moves the codes
theopt-arcs(cf. Figure 6.3.6). ByV (Topt) we denote the set of nodes inTopt.

A sketch of the proof is as follows. First, we show that in every stept Agreedy

has the possibility to assign the codes inCt into positions inside the opt-trees.
This possibility can be expressed by a code mappingφt : Ct → V (Topt). The



www.manaraa.com

6.3. One-Step Offline CA 125

01l-
4

l-
3

l-
2

l-
1

le
v
e
l

T
0

T
1

T
2

T
3

T
o
p
t

l

c
n
e
w

A
o
p
t

A
g
r
e
e
d
y

Figure 6.3.5:Lower bound example forAgreedy.
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an opt-arc greedy assignment

Figure 6.3.6: Aopt moves codes to assign a new codec0 using opt-arcs. The
opt-trees are subtrees to the root of whichAopt moves codes. Here, the cost of the
optimal solution is 5. The greedy algorithm has cost 6.
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key-property is now that in every step of the algorithm thereis the theoretical
choice to complete the current assignment using the code mapping φt and the
opt-arcs as follows: Useφt to assign the codes inCt into positions in the opt-
trees and then use the opt-arcs to move codes out of these subtrees of the opt-trees
to produce a feasible code assignment. We will see that this property is enough
to ensure thatAgreedyincurs a cost of no more than OPT on every level.

In the process of the algorithm it can happen that we have to change the opt-
arcs in order to ensure the existence ofφt. To model the necessary changes we
introduceαt-arcs that represent the changed opt-arcs aftert steps of the greedy
algorithm.

To make the proof-sketch precise, we need the following definitions:

Definition 6.11 Let Topt be the set of the opt-trees for a code insertionc0 and
let T t (together with its code assignmentF t) be the code tree aftert steps of the
greedy algorithmAgreedy. An α-mappingat time t is a mappingαt : Mαt

→
V (Topt) for someMαt

⊆ F t, such that∀v ∈ Mαt
: l(v) = l(αt(v)) and

αt(Mαt
) ∪ (F t \Mαt

) is a code assignment.

Note that in generalF t is not a code assignment for all codes since it does not
contain the codes inCt. The setαt(Mαt

) ∪ (F t \Mαt
) represents the resulting

code assignment (that again does not contain the codes inCt) after reassignment
of the codesMαt

⊆ F t byαt.

Definition 6.12 Let T t be a code tree,x, y be positions inT t andαt be anα-
mapping. We say thaty dependsonx in T t andαt, if there is a path fromx to y
using only tree-edges from a parent to a child andαt-arcs. Bydept(x) we denote
the set of all positionsy that depend onx in T t andαt. We say that anαt-arc
(u, v) depends onx if u ∈ dept(x).

For an illustration of this definition, see Figure 6.3.7.

Definition 6.13 At timet a pair (φt, αt) of a code mappingφt : Ct → V (Topt)
and anα-mappingαt is called anindependent mappingfor T t, if the following
properties hold:

1. ∀c ∈ Ct the levels ofφt(c) andc are the same (i.e.l(c) = l(φt(c)).

2. ∀c ∈ Ct there is no code inT t at or above the roots of the trees in
dept(φt(c)).

3. the code movements realized byφt andαt (i.e. the setφt(Ct)∪αt(Mαt
)∪

(F t \Mαt
)) form a code assignment.
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Figure 6.3.7:The filled subtrees represent all the positions that depend on x.

4. every node in the domainMαt
ofαt is contained indept(φt(Ct)) (i.e., no

unnecessary arcs are inαt).

Note thatφt andαt can equivalently be viewed as functions and as collections
of arcs of the form(c, φt(c)) and(u, αt(u)), respectively. We writedept(φt(Ct))
for the set

⋃

c∈Ct
dept(φt(c)). Note that if a pair(φt, αt) is an independent

mapping forT t, thendept(φt(Ct)) is contained in opt-trees and every node in
dept(φt(Ct)) can be reached on exactly one path fromCt (using oneφt-arc and
an arbitrary sequence of tree-arcs, which always go from parent to child, and
αt-arcs from a codec ∈ Γ(T t) toαt(c)).

Now we state a lemma that is crucial for the analysis of the greedy strategy.

Lemma 6.14 For every setCt in algorithmAgreedythe following invariant holds:

There is an independent mapping(φt, αt) for T t. (6.3.1)

Proof. The proof is done by induction ont and shows how to construct an in-
dependent mapping(φt+1, αt+1) from (φt, αt) by case analysis. The detailed
proof can be found in [49] and will be included in the thesis ofMatúš Mihal’ák.

�

We remark that Lemma 6.14 actually applies to all algorithmsthat work level-
wise top-down and choose a subtreeT t

g for each codect ∈ Ct arbitrarily under
the condition that there is no code on or above the positiong.

We can express the cost of the optimal solution by the opt-trees:

Lemma 6.15 (a) The optimal cost is equal to the number of assigned codes in
the opt-trees plus one, and (b) it is equal to the number of opt-trees.
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Proof. Observe for (a) thatAopt moves all the codes in the opt-trees and for (b)
thatAopt moves one code into the root of every opt-tree. �

Theorem 6.16 The algorithmAgreedyhas an approximation ratio ofh.

Proof. Agreedy works level-wise top-down. We show that on every levell the
greedy algorithm incurs a cost of at most OPT. Consider a timetl whereAgreedy

is about to start a new levell, i.e., beforeAgreedyassigns the first code on levell.
Assume thatCtl

containsql codes on levell. ThenAgreedyplaces theseql codes
in the roots of theql subtrees on levell containing the fewest codes. The code
mappingφtl

that is part of the independent mapping(φtl
, αtl

), which exists by
Lemma 6.14, maps each of theseql codes to a different position in the opt-trees.
Therefore, the total number of codes in theql subtrees with roots atφtl

(c) (for c a
code on levell in Ctl

) is at least the number of codes in theql subtrees chosen by
Agreedy. Combining this with Lemma 6.15(a), we see that on every level Agreedy

incurs a cost (number of codes that are moved away from their position in the
tree) that is at mostAopt’s total cost. �

6.4 Fixed Parameter Tractability of the Problem

In this section we consider the fixed parameter tractabilityof the parameterized
one-step offline Code Assignment problem, see also Definition 2.2. Parameter-
ized problems are described by languagesL ⊆ Σ∗ × N. If (x, k) ∈ L, we refer
to k as the parameter.

We assume that our problem is given by a pair(x, k), wherex encodes the
code insertion on levell and the current code assignment andk is the parameter.
We assume the encoding of the code assignment in the zero-onevector form
x1, . . . , x2h+1−1 saying for every node of the tree whether there is an assigned
code. Denote for the purpose of this section byn the size of the input, i.e.,
n := |x| = 2h+1 − 1.

We consider various variants of parameters for the problem.The most natural
ones are the number of moved codesm or the levell of the code insertion. To
show the fixed parameter tractability, we reuse the ideas of the exact dynamic
programming algorithm, which stores at every node a table ofall possible signa-
tures.

We first show that the problem is fixed parameter tractable, ifthe parame-
ters are bothm and l, i.e., we show an algorithm solving the problem in time
O(f(m, l)p(n)) for some polynomialp(n).
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For a code insertion into the code tree for levell, we know that we only move
codes from lower levels thanl. Hence, when building the tables at nodes, we
need to consider only those signatures that differ on levels0, . . . , l − 1 from the
signature of the current subtree. From the assumption that we move at mostm
codes, we have that on each of these levels, the considered signature can differ by
at mostm. Hence, the number of considered signatures in every node isat most
(2m+ 1)l. To compute all the tables, we need to combine all the tables from the
children nodes, i.e., we have to consider(2m+ 1)2l pairs for every node. From
this we get a running time ofO(2h(2m + 1)2l), which is certainly of the form
f(m, l)p(n).

For the case, where we have onlyl as the parameter, we immediately get that
we move from every subtreeTv at most2l codes, hence we bound the number of
codes moved in every subtree by a parameter (we note that we did not bound the
overall number of moved codes)m = 2l.

Consider now the case, where onlym is the parameter. Since we move at
mostm codes within the tree, we know that at mostm codes come into the
subtree and at mostm go away from the subtree. Hence, assigning for each such
possibility a level out of0, . . . , l, we get an upper bound of at most(l + 1)2m

signatures to be considered at every node on levell. Sincel + 1 ≤ h for l =
0, . . . , h−1 we get at every node at mosth2m = logn2m signatures. From [108]
we can use the inequality(logn)m ≤ (3m logm)m + n to express the size of
each table in the formg(m) + n. To compute the table for every node, we need
timen(g(m) + n)2 which is certainly of the formf(m)p(n).

We summarize the results of this section in the following theorem.

Theorem 6.17 The one-step offline CA problem is fixed parameter tractable for
the following parameters:

• the levell of the code insertion and

• the numberm of moved codes.
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Figure 6.5.1:Lower bound for the online assignment problem.

6.5 Online CA

Here we study the CA problem in an online setting, see Chapter2. We assume
that insertions do not exceed the total available bandwidth.

In the case of the online CA problem the requests for code insertions and
deletions must be handled one after another, i.e., theith request must be served
before thei+1st request is known. An online algorithm ALG for the CA problem
is c-competitiveif there is a constantα such that for all finite input sequencesI,

ALG(I) ≤ c ·OPT(I) + α .

We give a lower bound on the competitive ratio, analyze several algorithms
and present a resource augmented algorithm with constant competitive ratio.

Theorem 6.18 No deterministic algorithmA for the online CA problem can be
better than1.5-competitive.

Proof. Let A be any deterministic algorithm for the problem. ConsiderN leaf
insertions. The adversary can deleteN/2 codes (every second) to get the situation
in Figure 6.5.1.

Then a code insertion at levelh − 1 causesN/4 code reassignments. We
can proceed with the left subtree of full leaf codes recursively and repeat this
process(log2N − 1) times. The optimal algorithmAopt assigns the leaves in the
first step in such a way that it does not need any reassignment at all. Thus,Aopt

needsN + log2N − 1 code assignments. AlgorithmA needsN + T (N) code
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assignments, whereT (N) = 1+N/4+T (N/2)andT (2) = 0. Clearly,T (N) =

log2N − 1+ N
2 (1− 2/N). If CA ≤ c ·COPT thenc ≥ 3N/2+log2 N−2

N+log2 N−1 −→N→∞

3/2. �

6.5.1 Compact representation algorithm

This algorithm maintains the codes in the treeT sorted and compact. For a given
node/codev ∈ T we denote byl(v) its level and byw(v) its string representation,
i.e., the description of the path from the root to the node/code, where0 means
left child and1 right child as in Section 6.2.1. We use the lexicographic ordering
when comparing two string representations. ByU we denote the set of unblocked
nodes of the tree. We maintain the following invariants:

∀ codesu, v ∈ F : l(u) < l(v)⇒ w(u) < w(v), (6.5.1)

∀ nodesu, v ∈ T : l(u) ≤ l(v) ∧ u ∈ F ∧ v ∈ U

⇒ w(u) < w(v). (6.5.2)

This states that we want to keep the codes in the tree ordered from left to
right according to their levels (higher level assigned codes are to the right of
lower level assigned codes) and compact (no unblocked code to the left of any
assigned code on the same level).

In the following analysis we show that this algorithm is not worse thanO(h)
times the optimum for the offline version. We also give an example that shows
that the algorithm is asymptotically not better than this.

Theorem 6.19 AlgorithmAcompactsatisfying invariants (6.5.1) and (6.5.2) per-
forms at mosth code reassignments per insertion or deletion.

Proof. We show that for both insertion and deletion we need to make atmosth
code reassignments. When inserting a code on levell, we look for the rightmost
unassigned position on that level that maintains the invariants (6.5.1) and (6.5.2)
among codes on level0, . . . , l. Either the found node is not blocked, so that we do
not move any codes, or the code is blocked by some assigned code on a higher
level l′ > l (see Figure 6.5.2). In the latter case we remove this code to free
the position for levell and handle the new code insertion on levell′ recursively.
Since we move at most one code at each level and we haveh levels, we move at
mosth codes for each insertion.

Handling the deletion operation is similar, we just move thecodes from right
to left in the tree and move at most one code per level to maintain the invariants.

�
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Figure 6.5.2:For a code insertion, AlgorithmAcompactfinds the leftmost position
(blocked or unblocked) that has no code on it and no code in thesubtree below
it. It reassigns at most one code at every level.

Figure 6.5.3: Code assignments for levels0, 0, 1, 2, 3, 4, . . . , h − 1 and four
consecutive operations: 1. DELETE(h-1), 2. INSERT(0), 3. DELETE(0), 4. IN-
SERT(h-1).

Corollary 6.20 Algorithm Acompact satisfying invariants (6.5.1) and (6.5.2) is
O(h)-competitive.

Proof. In the sequenceσ = σ1, . . . , σm the number of deletionsd must be
smaller or equal to the numberi of insertions, which impliesd ≤ m/2. The cost
of any optimal algorithm is then at leasti ≥ m/2. On the other hand,Acompact

incurs a cost of at mostm · h, which implies that it isO(h)-competitive. �

Theorem 6.21 Any algorithmAI satisfying invariant(6.5.1) isΩ(h)-competitive.

Proof. Consider the sequence of code insertions on levels0, 0, 1, 2, 3, 4, . . . , h−
1. For these insertions, there is a unique code assignment satisfying invariant
(6.5.1), see Figure 6.5.3. Consider now two requests—deletion of the code at
level h − 1 and insertion of a code on level0. ThenAI has to move every
code on levell ≥ 1 to the right to create space for the code assignment on level
0 and maintain the invariant(6.5.1). This takes1 code assignment andh − 2
reassignments. Consider as the next requests the deletion of the third code on
level zero and an insertion on levelh − 1. Again, to maintain invariant(6.5.1),
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Figure 6.5.4:Requests that a greedy strategy cannot handle efficiently.

AI has to move every code on levell ≥ 1 to the left. This takes again1 code
assignment andh−2 reassignments. An optimal algorithm can handle these four
requests with two assignments, since it can assign the thirdcode on level zero in
the right subtree, whereAI assigns the code on levelh− 1. Repeating these four
requestsk times, the total cost of the algorithmAI is thenCI = h+1+2k(h−1),
whereas OPT hasCOPT = h+ 1 + 2k. As k goes to infinity, the ratioCA/COPT

becomesΩ(h). �

6.5.2 Greedy strategies

Assume we have a deterministic algorithmA that solves the one-step offline CA
problem. ThisA immediately leads to a greedy online-strategy. As an optimal
algorithm breaks ties in an unspecified way, the online-strategy can vary for dif-
ferent optimal one-step offline algorithms.

Theorem 6.22 Any deterministic greedy online-strategy, i.e. a strategythat mini-
mizes the number of reassignments for every insertion and deletion, isΩ(h) com-
petitive.

Proof. Assume thatA is a fixed, greedy online-strategy. First we insertN/2
codes at level 1. AsA is deterministic we can now delete every second level-
1 code, and insertN/2 level-0 codes. This leads to the situation depicted in
Figure 6.5.4. Then we delete two codes at levell = 1 (asA is deterministic it
is clear which codes to delete) and immediately assign a codeat levell + 1. As
it is optimal (and up to symmetry unique) the algorithmA moves two codes as
depicted. The optimal strategy arranges the level-1 codes in a way that it does
not need any additional reassignments. We proceed in this way along level 1
in the first round, then left to right on level 2 in a second round, and continue
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Figure 6.5.5: Reassignment of one code reduces the number of blocked codes
from 3 to 2.

toward the root. AlgorithmA movesN/4 codes in the first round and assigns
N/23 codes. In general, in every roundi the algorithm movesN/4 level-0 codes
and assignsN/2i+2 level-i codes. Altogether, the greedy strategy needsO(N)+
(N/4)Ω(logN) = Ω(N logN) (re-)assignments, whereas the optimal strategy
does not need any reassignments and onlyO(N) assignments. �

6.5.3 Minimizing the number of blocked codes

The idea of minimizing the number of blocked codes is mentioned in [109] but
not analyzed at all. In every step the algorithm tries to satisfy the invariant:

The number of blocked codes inT is minimum. (6.5.3)

In Figure 6.5.5 we see a situation that does not satisfy the invariant (6.5.3).
Moving a code reduces the number of blocked codes by one. We prove that
this approach is equivalent to minimizing the number of gap trees on every level
(Lemma 6.24). Recall that a gap tree is a maximal subtree of unblocked codes.

Definition 6.23 The level of the root of a gap tree is called thelevel of the gap
tree. The vectorq = (q0, . . . , qh), whereqi is the number of gap trees on leveli,
is called thegap vectorof the treeT .

See Figure 6.5.6 for an example of the definition. Invariant (6.5.3) implies that
there is at most one gap tree on every level. If there are two gap trees on level
l we can move the sibling tree of one of the gap trees to fill the other gap tree,
reducing the number of blocked codes by at least one (see Figure 6.5.5). The
following lemma states that there is indeed an equivalence between having a
minimal number of gap trees and having a minimum number of blocked codes.

Lemma 6.24 LetT be a code tree for requests vectorσ. ThenT has at most one
gap tree on every level if and only ifT has a minimum number of blocked codes.
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Proof. SupposeT has a minimum number of blocked codes. IfT had two gap
treesTu, Tv on levell, then we could move the codes in sibling treeTu′ of u into
Tv, which would save at least one blocked code (the parent ofu would become
unblocked), a contradiction.

Now suppose thatT has at most one gap tree on every level. We will show
that this property uniquely defines the gap vector for the given request vector
σ. Then we show that all code assignments with the same gap vector have the
same number of blocked codes. The two statements together prove the second
implication.

For the first statement observe that the free bandwidth capacity of T can be
expressed as

cap=

h∑

i=0

qi2
i .

As qi ≤ 1, the gap vector is the binary representation of the number cap and
therefore the gap vectorq is uniquely defined byσ for trees with at most one gap
tree per level. For the second statement note that the gap vector determines also
the number of blocked codes:

#blocked codes= (2h+1 − 1)−
h∑

i=0

qi(2
i+1 − 1) .

Thus, every tree for requestsσ with at most one gap tree at every level has the
same number of blocked codes. �

Now we are ready to define the algorithmAgap (Algorithm 7). As we will
show, on insertionsAgap never needs any extra reassignments.

Algorithm 7 : AlgorithmAgap

invariant : The number of blocked codes is minimum.

Insert:
Assign the new code into the smallest gap tree where it fits.
Delete:
delete code from tree
if deletion creates a second gap tree on some levelthen

move one of their sibling subtrees into the second gap tree
Treat all newly created second gap trees on higher levels recursively.

end
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Figure 6.5.7:Two gap trees on a lower level thanl′ violate the minimum chosen
height of the gap tree.

Lemma 6.25 The algorithmAgap has always a gap tree of sufficient height to
assign a code on levell and at every step the number of gap trees at every level
is at most one.

Proof. We know that there is sufficient capacity to serve the request, i.e.,cap ≥
2l. We also know thatcap =

∑

i qi2
i. Sinceqi ≤ 1 for all i, there exists a gap

tree on levelj ≥ l.

Next, consider an insertion into the smallest gap tree of level l′ where the
code fits. New gap trees can occur only on levelsj, l ≤ j < l′ and only within
the gap tree on levell′. Also, at most one new gap tree can occur on every level.
Suppose that after creating a gap tree on levelj, we have more than one gap tree
on this level. Then, sincej < l′, we would assign the code into this smaller
gap tree, which contradicts our assumption (Figure 6.5.7).Therefore, after an
insertion there is at most one gap tree on every level.

Consider now a deletion of a code. The nodes of the subtree of that code
become unblocked, i.e., they belong to some gap tree. At mostone new gap tree
can occur in the deletion operation (and some gap trees may disappear). Thus,
when the newly created gap tree is the second one on the level,we fill the gap
trees and then we recursively handle the newly created gap tree on a higher level.
In this way the gap trees are moved up. Because we cannot have two gap trees
on levelh− 1, we end up with a tree with at most one gap tree on each level.�

The result shows that the algorithm is optimal for insertions only. It does
not need any extra code movements, contrary to the compact representation al-
gorithm. Similarly to the compact representation algorithm, this algorithm is
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1.DELETE 2.ASSIGN

N/4 codesN/4 codes

Figure 6.5.8:Worst case number of movements for algorithmAgap.

Ω(logN)-competitive.

Theorem 6.26 AlgorithmAgap is Ω(h)-competitive.

Proof. The proof is basically identical with the proof of Theorem 6.22. �

The algorithmAgap has even a very bad worst case number of code move-
ments. Consider the four subtrees on levelh − 2, where the first one hasN/4
leaf codes inserted, its sibling has a code on levelh − 2 inserted and the third
subtree has againN/4 leaf codes inserted (Figure 6.5.8). After deletion of the
code on levelh− 2,Agap is forced to moveN/4 codes. This is much worse than
the worst case for the compact representation algorithm. Nevertheless, it would
be interesting to investigate the best possible upper boundthat can be proved for
the competitive ratio ofAgap.

6.5.4 Resource augmented online-algorithm

In this section we give the sketch of a resource augmented online-strategy2-gap,
see also Definition 2.1. In the case of the OVSF online code assignment problem
the resource is the total available bandwidth. The strategy2-gapuses a treeT ′ of
bandwidth2b to accommodate codes whose total bandwidth isb. By the nature
of the code assignment we cannot add a smaller amount of additional resource.
2-gapuses only an amortized constant number of reassignments perinsertion or
deletion.

Algorithm 2-gap is similar to the compact representation algorithm of Sec-
tion 6.5.1 (insisting on the ordering of codes according to their level, Invari-
ant (6.5.1)), only that it allows for up to 2 gaps at each levelℓ (instead of only
one for aligning), to the right of the assigned codes onℓ. The algorithm for in-
serting a code at levelℓ is to place it at the leftmost gap ofℓ. If no such gap exists,
we reassign the leftmost code of the next higher levelℓ+ 1, creating 2 gaps (one
of them is filled immediately by the new code) atℓ. We repeat this procedure
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toward the root. We reject an insertion if the nominal bandwidth b is exceeded.
For deleting a codec on levelℓ we move the rightmost code on levelℓ into the
positionc, keeping all codes at levelℓ to the left of the gaps ofℓ. If this results
in 3 consecutive gaps, we reassign the rightmost code of level ℓ + 1, in effect
replacing two gaps ofℓ by one ofℓ+ 1. Again we proceed toward the root.

A detailed description of this algorithm can be found in the thesis of Gábor
Szabó [120] and in [53]. The following theorem gives a performance guarantee
for the algorithm:

Theorem 6.27 ([120],[53])Letσ be a sequence ofm code insertions and dele-
tions for a code-tree of heighth, such that at no time the bandwidth is exceeded.
Then the above online-strategy uses a code-tree of heighth+ 1 and performs at
most2m+ 1 code assignments and reassignments.

Corollary 6.28 The above strategy is 4-competitive for resource augmentation
by a factor of 2.

Proof. Any sequence ofm operations contains at leastm/2 insert operations.
Hence the optimal offline solution needs at leastm/2 assignments, and the above
resource augmented online-algorithm uses at most2m+1 (re-)assignments, lead-
ing to a competitive ratio of4. �

6.6 Open Problems

In this chapter we derived a multitude of results. Some open problems remain
unanswered.

• Is there a constant approximation algorithm for the one-step offline CA
problem?

• Can the gap between the lower bound of 1.5 and the upper bound of O(h)
for the competitive ratio of the online CA be closed?

• Is there an instance where the optimal general offline algorithm has to re-
assign more than an amortized constant number of codes per insertion or
deletion?
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Chapter 7

Joint Base Station Scheduling

Sometimes our circuits get shorted
By external interference.
Signals get crossed
And the balance distorted
By internal incoherence.
(Rush - Vital Signs)

7.1 Introduction

In this chapter we consider different combinatorial aspects of a problem that
arises in the context of load balancing in time division networks.

The general setting is that users with mobile devices are served by a set of
base stations. In each time slot (round) of the time divisionmultiplexing each
base station serves at most one user. Traditionally, each user is assigned to a sin-
gle base station that serves her until she leaves the cell of the base station or until
her demand is satisfied. The amount of data that a user receives depends on the
strength of the signal that she receives from her assigned base station and on the
interference, i.e., all signal power that she receives fromother base stations. In
[43], Das et al. propose a novel approach: Clusters of base stations jointly decide
which users they serve in which round in order to increase network performance.
Intuitively, this approach increases throughput, when in each round neighbor-
ing base stations try to serve pairs of users such that the mutual interference is
low. We turn this approach into a discrete scheduling problem in one and two
dimensions (see Figure 7.1.1), the Joint Base Station Scheduling problem (JBS).

141
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b1 b2 b3u1 u2 u3 u4 u5 u6

(a) A possible situation in some time slot (round). Base sta-
tion b2 serves useru2, b3 serves useru6. Usersu3, u4 and
u5 are blocked and cannot be served. Base stationb1 cannot
serveu1 because this would create interference atu2.

b1 b2 b3u1 u2 u3 u4 u5 u6

(b) Arrow representation of (a).
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u8

u9

u10

u11

(c) A possible situation in some time slot in the 2D
case. Usersu2, u4, u7 andu12 are served. Base
stationb5 cannot serve useru1, because this would
create interference atu4 as indicated by the dashed
circle.

Figure 7.1.1:The JBS-problem in one and two dimensions.
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In one dimension (see Figure 7.1.1(a)) we are given a set ofn users as points
{u1, . . . , un} on a line and we are given positions{b1, . . . , bm} of m base sta-
tions. Note that such a setting could correspond to a scenario where the base
stations and users are located along a straight road. In our model, when a base
stationbj serves a userui, this creates interference for other users in an interval
of length2|bj − ui| around the midpointbj . In any round each base station can
serve at most one user such that at the position of this user there is no interfer-
ence from any other base station. The goal is to serve all users in as few rounds
as possible. In two dimensions users and base stations are represented as points
in the plane. When base stationbj serves userui this creates interference in a
disk with radius‖bj − ui‖2 and centerbj (see Figure 7.1.1(c)).

The one-dimensional problem is closely related to intervalscheduling prob-
lems, except that the particular way how interference operates leads to directed
intervals (arrows). For these, we allow their tails to intersect (intersecting tails
correspond to interference that does not affect the users atthe heads of the ar-
rows). We present results on this special interval scheduling problem. Similarly,
the problem is related to interval graphs, except that we have conflict graphs of
arrows together with the conflict rules defined by the interference (arrow graphs).

7.1.1 Related Work

Das et al. [43] propose an involved model for load balancing that takes into ac-
count different fading effects and calculates the resulting signal to noise ratios at
the users for different schedules. In each round only a subset of all base stations
is used in order to keep the interference low. The decision onwhich base stations
to use is taken by a central authority. The search for this subset is formulated as
a (nontrivial) optimization problem that is solved by complete enumeration and
that assumes complete knowledge of the channel conditions.The authors per-
form simulations on a hexagonal grid, propose other algorithms, and reach the
conclusion that the approach has the potential to increase throughput.

There is a rich literature on interval scheduling and selection problems (see
[54, 118] and the references given therein for an overview).Our problem is
more similar to a setting with several machines where one wants to minimize the
number of machines required to schedule all intervals. A version of this prob-
lem where intervals have to be scheduled within given time windows is studied
in [30]. Inapproximability results for the variant with a discrete set of starting
times for each interval are presented in [28].
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7.1.2 Model and Notation

In this section we define the problems of interest. Our model of computation
is the real RAM machine. The operands involved (positions onthe line or in
the plane) could be restricted also to rational numbers, butwe use real operands
to preserve the geometric properties of interval and disk intersections. In the
one-dimensional case we are given a setB = {b1, . . . , bm} ⊂ R of base
station positions and a setU = {u1, . . . , un} ⊂ R of user positions on the
line in left-to-right order. Conceptually, it is more convenient to think of the
interference region that is caused by some base stationbj serving a userui as an
interference arrowof length2|bj − ui| with midpointbj pointing to the user, as
shown in Figure 7.1.1(b). The interference arrow for the pair (ui, bj) has its head
atui and its midpoint atbj . We denote the set of all arrows resulting from pairs
P ⊆ U × B by A(P ). If it is clear from the context, we call the interference
arrows justarrows. If more than one user is scheduled in the same round then
each of them must not get any interference from any other basestation. Thus,
two arrows arecompatibleif no head is contained in the other arrow; otherwise,
we say that they are inconflict. Formally, the headui of the arrow for(ui, bk)
is contained in the arrow for(uj , bl) if ui is contained in the closed interval
[bl− |uj − bl|, bl + |uj − bl|]. If we want to emphasize which user is affected by
the interference from another transmission, we use the termblocking, i.e., arrow
ai blocks arrowaj if aj ’s head is contained inai.

As part of the input we are given only the base station and userpositions. The
arrows that show which base station serves which user are part of the solution.
For each user we have to decide from which base station she is served. This
corresponds to a selection of an arrow for her. Furthermore,we have to decide
in which round each selected arrow is scheduled under the side constraint that all
arrows in one round must be compatible. For this purpose it isenough to label
the arrows with colors that represent the rounds.

For the two-dimensional JBS problem we have positions inR2 andinterfer-
ence disksd(bi, uj) with centerbi and radius‖bi − uj‖2 instead of arrows. We
denote the set of interference disks for the user base-station pairs from a setP
byD(P ). Two interference disks are in conflict if the user who is served by one
of the disks is contained in the other disk; otherwise, they are compatible. The
problems can now be stated as follows:

1D-JBS

Input: User positionsU = {u1, . . . , un} ⊂ R and base station positions
B = {b1, . . . , bm} ⊂ R.
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Output: A setP of n user base-station pairs such that each user is in exactly
one pair, and a coloringC : A(P )→ N of the setA(P ) of corresponding
arrows such that any two arrowsai, aj ∈ A(P ), ai 6= aj , with C(ai) =
C(aj) are compatible.

Objective: Minimize the number of colors used.

2D-JBS

Input: User positionsU = {u1, . . . , un} ⊂ R2 and base station positions
B = {b1, . . . , bm} ⊂ R2.

Output: A setP of n user base-station pairs such that each user is in exactly one
pair, and a coloringC : D(P)→ N of the setD(P) of corresponding disks
such that any two disksdi, dj ∈ D(P), di 6= dj , with C(di) = C(dj) are
compatible.

Objective: Minimize the number of colors used.

For simplicity, we will write ci instead ofC(ai) in the rest of the chapter.
From the problem definitions above it is clear that both the 1D- and the 2D-JBS
problems consist of aselection problemand acoloring problem. In the selection
problem we want to select one base station for each user in such a way that the
arrows (disks) corresponding to the resulting setP of user base-station pairs can
be colored with as few colors as possible. We call a selectionP feasibleif it
contains exactly one user base-station pair for each user. Determining the cost of
a selection is then the coloring problem. This can also be viewed as a problem
in its own right, where we no longer make any assumption on howthe set of
arrows (for the 1D problem) is produced. The conflict graphG(A) of a setA
of arrows is the graph in which every node corresponds to an arrow and there is
an edge between two nodes if the corresponding arrows are in conflict. We call
such conflict graphs of arrowsarrow graphs. Thearrow graph coloring problem
asks for a proper coloring of such a graph. It is similar in spirit to the coloring
of interval graphs. As we will see in Section 7.2.1, the arrowgraph coloring
problem can be solved in timeO(n logn). We finish this section with a simple
lemma that leads to a definition:

Lemma 7.1 For each 1D-JBS instance there is an optimal solution in which each
user is served either by the closest base station to her left or by the closest base
station to her right.

Proof. This follows by a simple exchange argument: Take any optimalsolution
that does not have this form. Then exchange the arrow where a user is not served
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by the closest base station in some round against the arrow from the closest base
station on the same side (which must be idle in that round). Shortening an arrow
without moving its head can only resolve conflicts. Thus, there is also an optimal
solution with the claimed property. �

The two possible arrows by which a user can be served according to this
lemma are calleduser arrows. It follows that for a feasible selection one has to
choose one user arrow from each pair of user arrows.

7.1.3 Summary of Results

The work presented in this chapter was done in collaborationwith Thomas Er-
lebach, Riko Jacob, Matúš Mihal’ák, Gábor Szabó and Peter Widmayer. Extended
abstracts of these results are published in [52] and [51], and have and will be pre-
sented with different focus in the theses of Gábor Szabó [120] and Matúš Mihal’
ák.

We prove that arrow graphs are perfect and can be colored optimally in
O(n logn) time. For the one-dimensional JBS problem with evenly spaced base
stations we give a polynomial-time dynamic programming algorithm. For an-
other special case of the one-dimensional JBS problem, where3k users must be
served by3 base stations ink rounds, we give a polynomial-time optimal algo-
rithm. As a last variant we consider the decision problem of whether an instance
can be served ink rounds. We derive a 2-approximation algorithm for JBS based
on an LP rounding. In the two-dimensional case deciding whether all users can be
served in one round is doable in polynomial time. The general2D-JBS problem
is shown to be NP-complete. Finally, we analyze an approximation algorithm for
a constrained version of the 2D-JBS problem, and present lower bounds on the
quality of some natural greedy algorithms for the general two-dimensional JBS
problem.

My main contribution concerns the one-dimensional problem, in particular,
the algorithm for evenly spaced base stations and the analysis of the graph class
of arrow graphs. For this reason, the emphasis in this chapter is on 1D-JBS.
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7.2 1D-JBS

As mentioned earlier, solving the 1D-JBS problem requires selecting an arrow for
each user and coloring the resulting arrow graph with as few colors as possible.
To understand when a selection of arrows leads to an arrow graph with small
chromatic number, we first study the properties of arrow graphs in relation to
existing graph classes. Next we analyze special cases of 1D-JBS that are solvable
in polynomial time. At the end of this section we present a dynamic program
that solves the decision version of the 1D-JBS problem in time nO(k), wherek
is the number of rounds, and we show a2-approximation algorithm. The big
open problem remains the complexity of the general 1D-JBS problem: Is it NP-
complete or is it polynomially solvable?

7.2.1 Relation to Other Graph Classes

In order to gain a better understanding of arrow graphs, we first discuss their
relationship to other known graph classes.1 We refer to [20, 119] for definitions
and further information about the graph classes mentioned in the following.

First, it is easy to see that arrow graphs are a superclass of interval graphs:
Any interval graph can be represented as an arrow graph with all arrows pointing
in the same direction.

An arrow graph can be represented as the intersection graph of triangles on
two horizontal linesy = 0 andy = 1: Simply represent an arrow with left end-
pointℓ and right endpointr that points to the right (left) as a triangle with corners
(ℓ, 0), (r, 0), and(r, 1) (with corners(r, 1), (ℓ, 1), and(ℓ, 0) respectively). With
this representation two triangles intersect if and only if the corresponding arrows
are in conflict, see Figure 7.2.1 for an example. Intersection graphs of triangles
with endpoints on two parallel lines are known in the literature as PI∗ graphs.
They are a subclass of trapezoid graphs, which are the intersection graphs of
trapezoids that have two sides on two fixed parallel lines. Trapezoid graphs are in
turn a subclass of co-comparability graphs, a well-known class of perfect graphs.
Therefore, the containment in these known classes of perfect graphs implies the
perfectness of arrow graphs. Consequently, the size of a maximum clique in an
arrow graph equals its chromatic number.

As arrow graphs are a subclass of trapezoid graphs, we can apply known

1The connections between arrow graphs and known graph classes such as PI∗ graphs, trapezoid
graphs, co-comparability graphs, AT-free graphs, and weakly chordal graphs were observed by Ekki
Köhler, Jeremy Spinrad, Ross McConnell, and R. Sritharan at the seminar “Robust and Approxima-
tive Algorithms on Particular Graph Classes”, held in Dagstuhl Castle during May 24–28, 2004.
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Figure 7.2.1: An arrow graph (top) and its representation as a PI∗ graph (bot-
tom).

efficient algorithms for trapezoid graphs to arrow graphs. Felsner et al. [58]
give algorithms with running-timeO(n logn) for chromatic number, weighted
independent set, weighted clique, and clique cover in trapezoid graphs withn
nodes, provided that the trapezoid representation is given. The coloring algorithm
provided in [58] is similar to the followinggreedy coloringalgorithm.

We assume for simplicity that the arrowsA = {a1, . . . , an} are given in left-
to-right order of their left endpoints. This sorting can also be seen as the first
step of the greedy coloring algorithm. The algorithm scans the arrows from left
to right in this sorted order. In stepi it checks whether there are colors that have
already been used and that can be assigned toai without creating a conflict. If
there are such candidate colors, it considers, for each suchcolor c, the rightmost
right endpointrc among the arrows that have been assigned colorc so far. To
ai is assigned the colorc for which rc is rightmost (breaking ties arbitrarily). If
there is no candidate color, the algorithm assigns a new color to ai.

We show that this greedy algorithm produces an optimal coloring by showing
that any optimal solution can be transformed into the solution produced by the
algorithm.

Lemma 7.2 LetC be an optimal coloring for a set of arrowsA = {a1, . . . , an}.
The coloringC can be transformed into the coloring produced by the greedy
algorithm without introducing new colors.

Proof. We show the lemma by induction on the index of the arrows. The induc-
tion hypothesis is:There exists an optimal coloring that agrees with the greedy
coloring up to arrowk − 1. The induction start is trivial. In thekth step let
C = (c1, . . . , cn) be such an optimal coloring and letH = (h1, . . . , hn) be the
greedy coloring, i.e., we haveh1 = c1, h2 = c2, . . . , hk−1 = ck−1. We consider
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the coloringC′ = (c′1, . . . , c
′
n) that is obtained fromC by exchanging the colors

ck andhk for the arrowsak, . . . , an. More precisely, we define

c′i =







ci, if i < k or ci 6∈ {ck, hk}

hk, if i ≥ k andci = ck

ck, if i ≥ k andci = hk.

By definition we havec′k = hk, and it remains to show thatC′ is a proper coloring
and, therefore, the induction hypothesis is also true fork. If ck = hk we have
C′ = C, which is a proper coloring. Otherwise, we have to show that all pairs
of arrowsai, aj that are in conflict receive different colors inC′, i.e.,c′i 6= c′j . If
i, j < k or k ≤ i, j this is obvious by the fact thatC is a coloring. Hence, we
assumei < k < j; the casej = k is implied byH being a proper coloring.

If hk is a new color, i.e., different from all ofc1, . . . , ck−1, then, because of
the greedy algorithm, alsock is a new color. Hence, it is impossible that we have
c′i = c′j .

Now assume for a contradiction that we indeed havec = c′i = c′j and the
arrowsai andaj are in conflict. By the ordering of the arrows we know that
ai andak overlap. Observe thatc ∈ {ck, hk} becauseC is a coloring. This
leaves us with two cases:
Case 1c = ck: SinceC is a coloring, the arrowsai andak are compatible,
i.e. ai is directed left andak is directed right. Such a configuration is depicted
in Figure 7.2.2. By the definition of the greedy algorithm, weknow thathk is a
color of a compatible arrow. Sincehk 6= ck = ci, there must exist an arrowal,
l < k, that ends not beforeai and has colorhk, i.e.cl = hk (andal is compatible
with ak). Sinceaj is in conflict withai (the head ofaj is within ai), there is also
a conflict betweenaj andal. We havec′j = ck, implying cj = hk, hence we get
the contradictioncj = hk = cl in the optimal coloringC.
Case 2c = hk: BecauseH is a coloring,ai andak have to be compatible. Since
ai ends beforeak and is in conflict withaj , alsoaj is in conflict withak. Because
c′j = hk we know by definition ofC′ thatcj = ck, hence there is a conflict inC,
a contradiction. �

The running time of the algorithm depends on the time the algorithm spends
in every step on identifying an allowed color that was previously assigned to an
arrow with the rightmost right endpoint. By maintaining twobalanced search
trees (one tree for each direction of arrows) storing the most recently colored ar-
rows of the used colors (one arrow per color) in the order of their right endpoints,
we can implement this operation in logarithmic time. Together with Lemma 7.2
we get the following theorem.
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ai

aj

aj

i < k < j
ak

al

Figure 7.2.2: Possible configuration for the two cases. Dotted lines mean that
the arrows could be extended

Theorem 7.3 The greedy algorithm optimally colors a given set of arrows
{a1, . . . , an} in O(n log n) time.

We sum up the discussed properties of arrow graphs in the following theorem.

Theorem 7.4 Arrow graphs are perfect. In arrow graphs chromatic number,
weighted independent set, clique cover, and weighted clique can be solved in
timeO(n log n).

One can also show that arrow graphs are AT-free (i.e., do not contain an
asteroidal triple) and weakly chordal.

7.2.2 1D-JBS with Evenly Spaced Base Stations

As already mentioned it is still open whether 1D-JBS is NP-complete or not. In
order to explore the complexity boundary for the problem we searched for sim-
pler variants, for which there is a polynomial algorithm andfor harder variants
that are NP-complete. An obvious harder variant is 2D-JBS, which we prove
to be NP-complete in Section 7.3.1. A simpler variant is the 1D-JBS problem,
in which all base stations are evenly spaced, such that all neighboring base sta-
tions have the same distanced from each other. Additionally, we assume that the
leftmost user is not further apart than distanced from the leftmost base station,
similarly for the rightmost user. We call such users that arefurther thand apart
from any base stationfar out users.

Them base stations partition the line into a set{v0, . . . , vm} of intervals. We
assume that the base stations are given in left to right order. For this setting we
can conclude from Lemma 7.1 that no interference arrow intersects more than
two intervals, i.e., the influence of a base station is limited to its direct left and
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right neighboring base station. A solution (selection of arrows) is considered
non-crossingif there are no two usersu andw in the same interval such thatu is
to the left ofw, u is served from the right, andw from the left, in two different
rounds.

Lemma 7.5 For instances of 1D-JBS with evenly spaced base stations, there is
always an optimal solution that is non-crossing.

Proof. Consider an optimal solutions that is not non-crossing. We show that
such a solution can be transformed into another optimal solution s′ that is non-
crossing. Letu andw be two users such thatu andw are in the same interval,u
is to the left ofw, andu is served by the right base stationbr in roundt1 by arrow
ar andw is served by the left base stationbl in roundt2 by arrowal; obviously,
t1 6= t2. We can modifys such that in roundt1 base stationbr servesw and in
t2 base stationbl servesu. This new solution is still feasible because first of all
both the left and the right involved arrowsal andar have become shorter. This
implies that bothal andar can only block fewer users. On the other hand, the
head ofal has moved left and the head ofar has moved right. It is impossible
that they are blocked now because of this movement: Int1 this could only happen
if there were some other arrows containingw, the new head ofar. This arrow
cannot come from the left, because then it would have blockedalso the old arrow.
It cannot come frombr becausebr is busy. It cannot come from a base station to
the right ofbr, because such arrows do not reach2 any point to the left ofbr. For
t2 the reasoning is symmetric. �

The selection of arrows in any non-crossing solution can be completely char-
acterized by a sequence ofm− 1 division points, such that theith division point
specifies the index of the last user that is served from the left in theith interval.
(The case where all users in theith interval are served from the right is handled
by choosing theith division point as the index of the rightmost user to the left
of the interval, or as 0 if no such user exists.) A brute-forceapproach could now
enumerate over all possibleO(nm−1) division point sequences (dps) and color
the selection of arrows corresponding to each dps with the greedy algorithm from
Section 7.2.1.

Dynamic Programming

We can solve the 1D-JBS problem with evenly spaced base stations more effi-
ciently by a dynamic programming algorithm that runs in polynomial time. The

2Here we use the assumption that the rightmost user is no farther to the right of the rightmost base
station thand, and that the base stations are evenly spaced.
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bi bi+1 bi+2

vi+1

basestation
interval

division point di+1

bi−1

vi

di

χi(di−1, di)

vi−1

di−1

c(i, di−1, di, di+1)

Figure 7.2.3:Dynamic programming approach

idea of the algorithm is to consider the base stations and thus the intervals in left-
to-right order. We consider the costχi(di−1, di) of an optimal solution up to the
ith base station conditioned on the position of the division pointsdi−1 anddi in
the intervalsvi−1 andvi, respectively, see Figure 7.2.3.

Definition 7.6 We denote byχi(α, β) the minimum number of colors needed to
serve usersu1 touβ using the base stationsb1 to bi under the condition that base
stationbi serves exactly usersuα+1 to uβ and ignoring the usersuβ+1, . . . , un.

Let Λ(vi) denote the set of potential division points for intervalvi, i.e., the
set of the indices of users invi and of the rightmost user to the left ofvi (or 0
if no such user exists). The valuesχ1(d0, d1) for d0 = 0 (all users to the left
of b1 must be served byb1 in any solution) andd1 ∈ Λ(v1) can be computed
directly by using the greedy coloring algorithm. Fori ≥ 1, we compute the val-
uesχi+1(di, di+1) for di ∈ Λ(vi), di+1 ∈ Λ(vi+1) from the table forχi(·, ·).
If we additionally fix a division pointdi−1 for intervalvi−1, we know exactly
which selected arrows intersect intervalvi regardless of the choice of other di-
vision points. Observe that this only holds for evenly spaced base stations and
no far out users. For this selection, we can determine with the greedy color-
ing algorithm how many colors are needed to color the arrows intersectingvi.
Let us call this numberc(i, di−1, di, di+1) for interval vi and division points
di−1, di anddi+1. We also know how many colors we need to color the arrows
intersecting intervalsv0 to vi−1. For a fixed choice of division pointsdi−1, di

anddi+1 we can combine the two colorings corresponding toχi(di−1, di) and
c(i, di−1, di, di+1): Both of these colorings color all arrows of base stationbi,
and these arrows must all have different colors in both colorings. No other ar-
rows are colored by both colorings, soχi(di−1, di) andc(i, di−1, di, di+1) agree
up to redefinition of colors. We can choose the best division point di−1 and get

χi+1(di, di+1) = min
di−1∈Λ(vi−1)

max {χi(di−1, di), c(i, di−1, di, di+1)}

The running time is dominated by the calculation of thec(·) values. There are
O(m · n3) such values, and each of them can be computed in timeO(n logn)
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using the greedy coloring algorithm. The optimal solution can be found in the
usual way by tracing back where the minimum was achieved fromχm(x, n).
Here thex is chosen among the users of the interval before the last basestation
such thatχm(x, n) is minimum. For the traceback it is necessary to store in the
computation of theχ values where the minimum was achieved. The traceback
yields a sequence of division points that defines the selection of arrows that gives
the optimal schedule. Altogether, we have shown the following theorem:

Theorem 7.7 The base station scheduling problem for evenly spaced base sta-
tions can be solved in timeO(m · n4 logn) by dynamic programming.

Note that the running time can also be bounded byO(m · u4
max log umax),

whereumax is the maximum number of users in one interval.

7.2.3 3k Users,3 Base Stations ink Rounds

In the last section we made the restriction that the input must not contain far out
users. One could ask whether the complexity of the problem ischanged when
far out users are present. In order to explore this directiona bit we define a (very
special) variant here, in which far out users are present, but still the problem can
be solved in polynomial time: We are given3 base stationsb1, b2 andb3, and3k
users withk far out users among them. Far out users are the users to the left of
b1 or to the right ofb3 whose interference arrows containb2. We want to find out
whether the users can be served ink rounds or not.

This special setting forces every base station to serve a user in every round if
there is ak-schedule. A far out user has to be served by its unique neighboring
base station. Since the arrows of far out users containb2, all users betweenb1
andb2 are blocked when the far out users ofb1 are served. Hence they have to be
served when the far out users ofb3 are served. Based on this observation every
round contains one of the following types of arrow triplets:

Type 1: b3 serves a far out user,b2 serves a user betweenb1 andb2, andb1 serves
a user that is not a far out user.

Type 2: b1 serves a far out user,b2 serves a user betweenb2 andb3, andb3 serves
a user that is not a far out user.

For every user, it is uniquely determined whether it will be served in a round of
Type 1 or Type 2.

We can schedule the users in the following way. Letk1 andk3 be the number
of far out users ofb1 and b3 respectively withk = k1 + k3. First, we serve
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u1 u2

b1

u3 u4 u5 u6 u7

b2

u8

b3

u9 u10 u11 u12

round 1

round 2

round 3

Figure 7.2.4:Far out usersu10, u11 andu12 are served byb3 in rounds1, 2 and
3, respectively. The arrows represent the Type 1 rounds. Usersu1, u8 andu9 will
be scheduled in a round of Type 2 (not shown).

the far out users ofb3 in rounds1, . . . , k3 in the order of increasing distance
from b3. Next, we match the resulting arrows in a best fit manner with arrows
produced byb2 serving users betweenb1 andb2 (see Figure 7.2.4). For every
roundi = 1, 2, . . . , k3, we find the user closest tob2 that can be served together
with the corresponding far out user served byb3, and schedule the corresponding
transmission in that round. Using this selection strategy the size of the arrows
of b2 grows with the number of the round in which they are scheduled. Now we
have to serve the remainingk3 users (that are not far out users ofb1) with b1. We
use a best fit approach again, i.e., for every roundi = 1, 2, . . . , k3, we schedule
the user with maximum distance fromb1 (longest arrow) among the remaining
users. The schedule for the remaining users that form the rounds of Type 2 can
be done similarly, starting with the far out users ofb1.

Theorem 7.8 For the 1D-JBS problem with3 base stations and3k users with
k far out users deciding whether ak-schedule exists can be done inO(n logn)
time.

Proof. The proof can be found in [52] and will appear in the thesis of Matúš
Mihal’ák. The proof shows that the greedy scheduling strategy finds such ak-
schedule in timeO(n log n) if one exists. �

7.2.4 Exact Algorithm for the k-Decision Problem

In this section we present an exact algorithm for the decision variantk-1D-JBS
of the 1D-JBS problem: For givenk and an instance of 1D-JBS, decide whether
all users can be served in at mostk rounds. We present an algorithm for this
problem that runs inO(m · n2k+1 logn) time.

We use the result from Section 7.2.1 that arrow graphs are perfect. Thus the
size of the maximum clique of an arrow graph equals its chromatic number.
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The idea of the algorithm, which we callAk−JBS, is to divide the problem
into subproblems, one for each base station, and then combine the partial solu-
tions to a global one.

For base stationbi, the corresponding subproblemSi considers only arrows
that intersectbi and arrows for which the alternative user arrow3 intersectsbi.
Call this set of arrowsAi. We callSi−1 andSi+1 neighborsof Si. A solution
to Si consists of a feasible selection of arrows fromAi of cost no more thank,
i.e. the selection can be colored with at mostk colors. To find all such solu-
tions we enumerate all possible selections that can lead to asolution ink rounds.
For Si we store all such solutions{s1i , . . . , s

I
i } in a tableTi. We only need to

consider selections in which at most2k arrows intersect the base stationbi. All
other selections need more thank rounds, because they must contain more than
k arrows pointing in the same direction atbi. Therefore, the number of entries
of Ti is bounded by

∑2k
j=0

(
n
j

)
= O(n2k). We needO(n log n) time to evaluate

a single selection with the greedy coloring algorithm. Selections that cannot be
colored with at mostk colors are marked as irrelevant and ignored in the rest
of the algorithm. We build up the global solution by choosinga set of feasible
selectionss1, . . . , sm in which all neighbors are compatible, i.e. they agree on
the selection of common arrows. It is easy to see that in such aglobal solution
all subsolutions are pairwise compatible.

We can find such a set of compatible neighbors by going throughthe tables
in left-to-right order and marking every solution in each table asvalid if there
is a compatible, valid solution in the table of its left neighbor, or asinvalid oth-
erwise. A solutionsi marked as valid in tableTi thus indicates that there are
solutionss1, . . . , si−1 in T1, . . . , Ti−1 that are compatible with it and pairwise
compatible. In the leftmost tableT1, every feasible solution is marked as valid.
When the marking has been done for the tables of base stationsb1, . . . , bi−1,
we can perform the marking in the tableTi for bi in timeO(n2k+1) as follows.
First, we go through all entries of the tableTi−1 and, for each such entry, in time
O(n) discard the part of the selection affecting pairs of user arrows that intersect
only bi−1 but notbi, and enter the remaining selection into an intermediate table
Ti−1,i. The tableTi−1,i stores entries for all selections of arrows from pairs of
user arrows intersecting bothbi−1 andbi. An entry inTi−1,i is marked as valid if
at least one valid entry fromTi−1 has given rise to the entry. Then, the entries of
Ti are considered one by one, and for each such entrysi the algorithm looks up
in timeO(n) the unique entry inTi−1,i that is compatible withsi to see whether
it is marked as valid or not, and marks the entry inTi accordingly. If in the end
the tableTm contains a solution marked as valid, a set of pairwise compatible

3For every user there are only two user arrows that we need to consider (Lemma 7.1). If we
consider one of them, the other one is thealternative user arrow.
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Figure 7.2.5:Arrow types intersecting at a pointp between base stationsbi and
bi+1.

solutions from all tables exists and can be retraced easily.

The overall running time of the algorithm isO(m · n2k+1 · logn). There is a
solution tok-1D-JBS if and only if the algorithm finds such a set of compatible
neighbors.

Lemma 7.9 There exists a solution tok-1D-JBS if and only ifAk−JBS finds a
set of pairwise compatible solutions.

Proof. (⇒) Every arrow intersects at least one base station. A global solution di-
rectly provides us with a set of compatible subsolutionsΣopt = {sopt

1 , . . . , sopt
m }.

Since the global solution has cost at mostk, so have the solutions of the subprob-
lems. Hence, the created entries will appear in the tables ofthe algorithm and will
be considered and marked as valid. Thus, there is at least oneset of compatible
solutions that is discovered by the algorithm.

(⇐) We have to show that the global solution constructed from thepartial
ones has cost at mostk. Suppose for a contradiction that there is a pointp where
the clique size is bigger thank and therefore bigger than the clique atbi (the
left neighboring base station ofp) and the clique atbi+1 (the right neighboring
base station ofp). We divide the arrows intersecting pointp into 5 groups as
in Figure 7.2.5. Arrows of type1 (2) have their head betweenbi andbi+1 and
their tail to the left (right) ofbi (bi+1). Arrows of type3 (4) have their tail
betweenbi andbi+1 and their head to the left (right) ofbi (bi+1). Finally, type
5 arrows intersect bothbi andbi+1. For the clique atp to be bigger than that
at bi some arrows not considered atbi have to create conflicts. The only such
arrows (considered atbi+1 but not atbi) are of type4. Observe that arrows of
type1, 2 and5 are considered both at the table forbi and at the table forbi+1.
If their presence increases the clique size atp, then no type3 arrow can be in
the maximum clique atp (observe that arrows of type3 and4 are compatible).
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A type 3 arrows are the only arrows present atp but not atbi+1, the clique atp
cannot be bigger than the clique atbi+1, a contradiction. �

To sum up, we have shown the following theorem.

Theorem 7.10 Problemk-1D-JBS can be solved inO(m · n2k+1 log n) time.

7.2.5 Approximation Algorithm

In this section we present an approximation algorithm for 1D-JBS that relies on
the properties of arrow graphs from Theorem 7.4. LetA denote the set of all user
arrows of the given instance of 1D-JBS. From the perfectnessof arrow graphs it
follows that it is equivalent to ask for a feasible selectionAsel ⊆ A minimizing
the chromatic number of its arrow graphG(Asel) (among all feasible selections)
and to ask for a feasible selectionAsel minimizing the maximum clique size
of G(Asel) (among all feasible selections). Exploiting this equivalence, we can
express the 1D-JBS problem as an integer linear program as follows. We intro-
duce two indicator variablesli andri for every useri that indicate whether she
is served by the left or by the right base station, i.e. if the user’s left or right
user arrow is selected. Moreover, we ensure by the constraints that no cliques in
G(Asel) are large and that each user is served. The ILP formulation isas follows:

min k (7.2.1)

s.t.
∑

li∈C

li +
∑

ri∈C

ri ≤ k, ∀ cliquesC in G(A) (7.2.2)

li + ri = 1, ∀i ∈ {1, . . . , |U |} (7.2.3)

li, ri ∈ {0, 1}, ∀i ∈ {1, . . . , |U |} (7.2.4)

k ∈ N (7.2.5)

The natural LP relaxation is obtained by allowingli, ri ∈ [0, 1] andk ≥ 0.
Given a solution to this relaxation, we can use a rounding technique to get an
assignment of users to base stations that has cost at most twice the optimum,
i.e., we obtain a 2-approximation algorithm. Let us denote by opt the optimum
number of colors needed to serve all users. Thenopt≥ k, because the optimum
integer solution is a feasible fractional solution. Construct now a feasible solution
from a solution to the relaxed problem by roundingli := ⌊li + 0.5⌋, ri := 1− li.
Before the rounding the size of every (fractional) clique isat mostk; afterwards
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In−1

ubl br

lu = 0.5 ru = 0.5
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In :

In−1

Figure 7.2.6: Lower bound example for the 2-approximation ratio of the LP
relaxation technique.

the size can double in the worst case. Therefore, the cost of the rounded solution
is at most2k ≤ 2opt.

The factor of 2 is tight for our technique because the gap between a frac-
tional and an integral solution can really get arbitrarily close to 2: In Figure 7.2.6
the cost of an optimal fractional solution is smaller than the cost of an optimal
integral solution by a factor arbitrarily close to2. In this example, the basic con-
structionI1 contains two base stationsbl andbr and one useru in-between. Both
the solution of the ILP and the solution of the LP relaxation have cost1. I2 is
constructed recursively by adding toI1 two (scaled) copies ofI1 in the tail posi-
tions of the arrows. In this case the cost of the relaxed LP is1.5 and the integral
cost is2. The constructionIn, aftern recursive steps, is shown at the bottom of
Figure 7.2.6. This construction is achieved by usingI1 and putting two scaled
In−1 settings in the tail of the arrows fromI1. The cost of the LP relaxation for
In is n+1

2 , whereas the cost of the ILP isn.

One issue that needs to be discussed is how the relaxation canbe solved in
time polynomial inn andm, as there can be an exponential number of con-
straints (7.2.2). (Figure 7.2.7 shows that this can really happen. The potentially
exponential number of maximal cliques in arrow graphs distinguishes them from
interval graphs, which have only a linear number of maximal cliques.) Fortu-
nately, we can still solve such an LP in polynomial time with the ellipsoid method
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. . .

a1
a2

a3

a4

an−1

an

Figure 7.2.7: Example of an arrow graph with an exponential number of maxi-
mum cliques. For every choice of arrows from a compatible pair (a2i−1, a2i) we
get a clique of sizen/2, which is maximum. The arrow graph can arise from a
1D-JBS instance with two base stations in the middle andn/2 users on either
side.

of Khachiyan [79] applied in a setting similar to [67]. This method only requires
a separation oracle that provides us for any values ofli, ri with a violated con-
straint, if one exists, see also Section 4.6. It is easy to check for a violation of
constraints (7.2.3) and (7.2.4). For constraints (7.2.2),we need to check if for
given values ofli, ri the maximum weighted clique inG(A) is smaller thank.
By Theorem 7.4 this can be done in timeO(n log n). Summarizing, we get the
following theorem:

Theorem 7.11 There is a polynomial-time2-approximation algorithm for the
1D-JBS problem.

7.2.6 Different Interference Models

Up to now we have analyzed the discrete interference model where the interfer-
ence region has no effect beyond the targeted user. One step towards a more
realistic model is to consider the interference region, produced by a base station
sending a signal to a user, to span also beyond the targeted user. We call the 1D-
JBS problem using this more realistic interference model the modified 1D-JBS
problem. For the 1-dimensional case this can be modeled by using interference
segmentswith the user somewhere between the endpoints of this segment (the
small black circles on the segments in Figure 7.2.8) and the base station in the
middle of the segment. The conflict graph of such interference segments is an-
other special case of trapezoid graphs. For an example see Figure 7.2.8. The
trapezoid representing the segment[a, b] (serving useru) from Figure 7.2.8 is
built using the parallel edges[a′, u′] (the projection of the segment[a, u] onto the
upper supporting line of the trapezoid) and[u′′, b′] (the projection of the segment
[u, b] onto the lower supporting line of the trapezoid).
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a u b

a′ u′

u′′ b′

Figure 7.2.8:Example for interference segments.

We also get the trapezoid representation mentioned above ifwe consider a
segment with a user between its endpoints as two arrows pointing to the user one
from left and one from right. Then the triangle transformation for arrows (from
Section 7.2.1) results in the trapezoid representation from Figure 7.2.8. Thus, for
themodified 1D-JBSusing Theorem 7.11 we have the following result:

Corollary 7.12 There is a polynomial-time2-approximation algorithm for the
modified 1D-JBSproblem.

The proof is similar to the proof from Section 7.2.5, except that instead of arrow
graphs we have another special case of trapezoid graphs.
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Figure 7.3.1:A cycle of length 5 in the conflict graph of interference disks(left).
It is not clear, however, whether an optimal solution to the selection problem will
ever yield such a conflict graph; a different selection for this instance yields a
conflict graph with five isolated nodes (right).

7.3 2D-JBS

We now turn to the two-dimensional version 2D-JBS. We first show that the de-
cision variantk-2D-JBS of 2D-JBS is NP-complete. Then we present a constant
factor approximation for a constrained version of it and briefly discuss lower
bounds for natural algorithms for the general 2D-JBS problem.

One could be led to believe that an extension of the approximation algorithm
in Section 7.2.5 should lead to an approximation algorithm for 2D-JBS. However,
the conflict graph of a set of interference disks is not necessarily perfect: It can
have odd cycles as shown in Figure 7.3.1.

7.3.1 NP-Completeness of thek-2D-JBS Problem

In this section we briefly sketch our reduction from the general graphk-col-
orability problem [62] to 2D-JBS; the complete proof can be found in [120]. Our
reduction follows the methodology presented in [66] for unit diskk-colorability.

Given any graphG, it is possible to construct in polynomial time a corre-
sponding 2D-JBS instance that can be scheduled ink rounds if and only ifG is
k-colorable. We use an embedding ofG into the plane which allows us to replace
the edges ofG with suitable base station chains with several users in a systematic
way such thatk-colorability is preserved. Our main result is the following:

Theorem 7.13 Thek-2D-JBS problem in the plane is NP-complete for any fixed
k ≥ 3.
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In the k-2D-JBS instances used in our reduction, the selection of the base
station serving each user is uniquely defined by the construction. Hence, our
reduction proves that already the coloring step of the 2D-JBS problem is NP-
complete.

Corollary 7.14 The coloring step of thek-2D-JBS problem is NP-complete for
any fixedk ≥ 3.

7.3.2 Bounded Geometric Constraints

Here, we consider a constrained version of the 2D-JBS problem. In the real
life application of mobile communication networks it is often the case that the
maximum reach of a cell is limited by the maximum transmitting power. It is
also common sense to consider that base stations cannot be placed arbitrarily but
a certain minimum distance between them has to be maintained. These are the
two geometric constraints that we use in this section. Namely, the base stations
are at least a distance∆ from each other and have limited power to serve a user,
i.e., every base station can serve only users that are at mostRmax distance away
from it. To make sure that under these constraints a feasiblesolution exists (i.e.
all users can be served) we limit ourselves to instances where every user can be
reached by at least one base station. We present a simple algorithm achieving an
approximation ratio which only depends on the parameters∆ andRmax.

Consider the following greedy approachA2D−appx: In the current round the
algorithm repeatedly picks an arbitrary user base-stationpair(u, b), whereu is an
unserved user, such that the transmission fromb to u can be added to this round
without creating a conflict. If no such user base-station pair exists, the next round
starts. The algorithm terminates when all users have been served.

The approximation ratio achieved byA2D−appx is given in the following
analysis. Assume that the algorithm schedules the users ink rounds. Letu be
a user served in roundk, and letb be the base station servingu. Sinceu was
not served in the previous rounds1, 2, . . . , k − 1, we know that in each of these
rounds, at least one of the following is true:

• b serves another useru′ 6= u.

• u is contained in an interference diskd(b′, u′) for some useru′ 6= u that is
served in that round.

• b cannot transmit tou because the diskd(b, u) contains another useru′ that
is served in that round.



www.manaraa.com

7.3. 2D-JBS 163

In any of these cases, a useru′ is served, and the distance betweenu andu′ is at
most2Rmax (since every interference disk has radius at mostRmax). Therefore,
the disk with radius2Rmax centered atu contains at leastk users (includingu).
If B′ is the set of base stations that serve thesek users in the optimal solution,
these base stations must be located in a disk with radius3Rmax centered atu.
Since any two base stations are separated by a distance of∆, we know that disks
with radius∆/2 centered at base stations are interior-disjoint. Furthermore, the
disks with radius∆/2 centered at the base stations inB′ are all contained in a
disk with radius3Rmax +∆/2 centered atu. Therefore, the following inequality
holds

|B′| ≤
(3Rmax + ∆/2)2π

(∆/2)2π
=

(6Rmax + ∆)2

∆2
.

Hence the optimal solution needs at leastk/|B′| rounds. This yields the follow-
ing theorem.

Theorem 7.15 There exists an approximation algorithm with approximation ra-
tio (6Rmax+∆

∆ )2 for 2D-JBS in the setting where any two base stations are at
least∆ away from each other and every base station can serve only users within
distance at mostRmax from it.

7.3.3 General 2D-JBS

In the technical report4 [52] we also discuss lower bounds on three natural greedy
approaches for the general 2D-JBS problem: serve a maximum number of users
in each round (max-independent-set), or repeatedly choose an interference disk of
an unserved user with minimum radius (smallest-disk-first), or repeatedly choose
an interference disk containing the fewest other unserved users (fewest-users-in-
disk). In [52] we prove the following theorem.

Theorem 7.16 There are instances(U,B) of 2D-JBS in general position (i.e.,
with no two users located on the same circle centered at a basestation) for which
the maximum-independent-setgreedy algorithm, the smallest-disk-first greedy al-
gorithm, and the fewest-users-in-disk greedy algorithm have approximation ratio
Ω(log n), wheren = |U |.

For instances of 2D-JBS that are not in general position, thesmallest-disk-
first greedy algorithm can have approximation ration, as shown in Figure 7.3.2.

4Lower bounds for the general 2D-JBS problem will also be a topic of Matúš Mihal’ák’s thesis.
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Figure 7.3.2:Lower bound for smallest-disk-first algorithm.

7.4 Open Problems

In this chapter we analyzed the 1D- and 2D-JBS problems that arise in the context
of coordinated scheduling in packet data systems. These problems can be split
into a selection and a coloring problem. In the one-dimensional case, we have
shown that the coloring problem leads to the class of arrow graphs, for which we
have discussed its relation to other graph classes and algorithms. For the selection
problem we proposed an approach based on LP relaxation with rounding. For the
2D-problem, we have shown its NP-completeness.

The following problems remain still open:

• Is the 1D-JBS problem NP-complete or is there a polynomial time algo-
rithm that solves it?

• Are there constant approximation algorithms for the unconstrained 2D-
JBS problem?
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Summary of contributions

In this thesis we have studied algorithmic problems that arederived from practi-
cal applications as directly as possible. We were able to develop theoretical re-
sults with immediate applicability to the original problems. The thesis illustrates
the interaction between theory and practice: We start from apractical problem,
build a mathematical model for it that leads to new theoretical questions and
challenges. The solution to these theory problems then has implications for the
original problem or even directly leads to a satisfactory solution. In this context,
it has proven crucial to have at one’s disposal the whole available spectrum of
algorithmic techniques. The reason for this is that depending on the type of the
problem different techniques prove to be successful.

The sequential vector packing problem is a good example of a clean com-
binatorial problem that arises in practice and necessitates the design of new al-
gorithms. We have developed a bicriteria(1

ε ,
1

1−ε)- and a(1, 2)-approximation
algorithm. For this algorithm we use the technique of LP-rounding and for its
analysis structural properties about the optimal solutions. An NP-completeness
proof justifies the use of approximation algorithms. Already this approximation
algorithm is readily usable in the original industry setting. However, it requires
an LP-solver. In order to stress the practical side even more, we analyze the
performance of two natural greedy heuristics similar to those that were initially
employed to tackle the problem. Our analysis shows that these heuristics can
produce very bad solutions on some instances. We substantiate this theoretical
analysis by experiments, by which we also demonstrate that avery simple ran-
domized heuristic outperforms the greedy heuristics. The results for sequential
vector packing highlight the interplay between algorithm analysis and real-world
problems.

165
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At the core of the optimization of a hub and spoke railway system lies the
development of a mathematical model that captures enough ofthe real world
problem to be useful and that is at the same time amenable to a computational
approach that can produce solutions in reasonable time. We have presented a
sequence of models and discussed their advantages and limitations. In particular,
the use of LP-based optimization techniques not only produces solutions but also
lower bounds and thus a quality guarantee that is difficult toprovide by simple
meta-heuristics for the problem at hand. The migration froma branch and cut
model to a column generation model has allowed us to incorporate considerably
more aspects of the problem without decreasing the size of the instances that we
can solve in a given time. In particular, we were able to validate our approaches
on real world data of Swiss federal railways SBB Cargo Ltd. Wesucceeded in
producing solutions to these instances. The column generation model, that is part
of an ongoing project at the time of writing this thesis, promises to be a useful
tool in the calculation of schedules for companies such as SBB Cargo.

For the problem of OVSF-code assignment we have shown the DCAalgo-
rithm, which was proposed and referenced in several telecommunications pub-
lications to be incorrect both by a concrete counter-example and by an NP-
hardness proof which also settled the complexity of the one-step offline CA
problem addressed by the DCA algorithm. We also showed that the technique
of dynamic programming can be applied to obtain a moderatelyefficientnO(h)-
algorithm. More importantly, we showed that it is much more natural to study
the problem in an online setting. In particular, an optimal algorithm to the ini-
tial problem formulation, which solves an NP-complete problem in every step, is
provably no better than aΘ(h)-competitive scheme that we propose. We com-
plemented this result by showing theΩ(h)-competitiveness of other proposed
schemes and sketching a resource augmented algorithm with constant competi-
tive ratio. A crucial ingredient to the design of useful algorithms for the OVSF
code assignment problem has been the change in perspective from the “classical”
one step problem to the online problem.

Similar to the OVSF code assignment problem, the joint base station schedul-
ing problem is inspired by a publication from telecommunications. It led us to
the arrow graph class, which in turn is connected to trapezoid graphs. In these
graph classes polynomial algorithms for chromatic number,weighted indepen-
dent set, clique cover, and weighted clique exist as they areperfect. The perfect-
ness of arrow-graphs helps in the design of an approximationalgorithm for the
one-dimensional version of the problem. Unfortunately, there is no direct corre-
spondence to this result in two dimensions. Still, for the two dimensional case,
we were able to prove NP-completeness and to give approximation algorithms
in a restricted setting. It should be clear that this approximation algorithm is not



www.manaraa.com

167

suitable for the original application. On the other hand, our theoretical results
give a different kind of insight into the original problem: The conceptual idea
of a coordination of base stations on a very short time scale that should help to
boost the performance of the network leads to hard combinatorial problems that
must be solved very fast. Therefore, one might call into question the proposed
procedure and search for specialized algorithms that can compute the desired
scheduling in real-time only if it still seems desirable to employ the method from
an applications point of view.

To sum up, the four problems encountered in this thesis show in different
ways how practice and theory are connected and can benefit from each other.
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Table A.1: Characteristics of the computers on which we ran experiments
Machine A B C
CPU type Intel P4 Intel P4, AMD Athlon 64 X2/DC 4400+
CPU clock 3GHz 3GHz 1 GHz
memory 2 GB 3 GB 4 GB
OS Linux 2.4.22 Linux 2.4.22 Linux 2.6.13-15.8-smp
CPLEX 9.0 9.0 10.0
OPL 3.7 3.7 -

A.1 Setting for Computational Experiments

Table A.1 gives an overview over the computers that we used for the experiments.
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A.2 ILP Formulation

We give here the ILP formulation for the most basic model, Model 0. This for-
mulation models both the routing and the scheduling aspect of the general train
optimization problem (cf. Definition 5.1), but it ignores the capacity aspect. It is
written in the OPL language, see [71]. It is explained in Section 5.4 and evaluated
in Section 5.8.

////////////////
// INPUT //
////////////////

// number of trains
int+ nbTrains = ...;

// number of vertices
int+ nbVertices = ...;
int+ nbHubs = ...;

// big Ms used in Model
int MtwD = 30;
int MtwA = 36;
int Mdep = 36;
int Mtc = 36;

int+ hubDistance = ...;
int+ averageSpeed = ...;
int+ hubTravelTime = hubDistance / averageSpeed;

// Ranges
range

bool 0..1,
idTrains [1..nbTrains],
idVertices [0..nbVertices-1],
// we experimented with relaxing some of the bool vars to [0..1] vars
// if their integrality was implied by other vars
float oone [0.0..1.0],
float departTimes [0..MtwD],
float arriveTimes [0..MtwA],
float betweenTimes [0..MtwD];

// Sets
{int} Trains = {i | i in idTrains};
{int} Vertices = {i | i in idVertices};
{int} Hubs = {i | i in [0..nbHubs-1]};

// Further parameters
// the minimum time that a car needs to be processed in the shunting yard

int+ shuntingTime = ...;
int+ hubShuntingTime = ...;

int+ maxTrainLength = ...;
bool doGraphics = ...;
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int+ costPerEngine = ...;
int+ costPerKilometer = ...;

struct arc {int i; int j;};
{arc} Arcs = ...;
int+ nbArcs = card(Arcs);
int+ length[Arcs] = ...;

int+ times[Arcs];
initialize

forall(a in Arcs) times[a] = length[a]/averageSpeed;

display times;

struct shipment{
int index;
int start;
int end;
int volume;
departTimes earliestDeparture;
departTimes latestDeparture;
arriveTimes earliestArrival;
arriveTimes latestArrival;

};
{shipment} Shipments = ...;
display Shipments;

int nbShipments = 0;
initialize

forall(s in Shipments) {
s.index = nbShipments;
nbShipments = nbShipments+1;

};

// direct path lengths
int directpathscosts[0.. nbShipments-1]= ...;

////////////////
// MODEL //
////////////////
// train uses arc on its way to some hub
var bool travelsForth[Trains,Arcs];

// train uses arc on its way from some hub
var bool travelsBack[Trains,Arcs];

// train goes between two hubs
var bool travelsBetween[Trains, Hubs, Hubs];

// train starts at vertex
var bool starts[Trains,Vertices];

// train ends at vertex
var bool ends[Trains,Vertices];

// time at which a train arrives at a station on its way to some hub
var departTimes arrivesForth[Trains, Vertices];
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// time at which a train arrives at a station on its way from some hub
var arriveTimes arrivesBack[Trains, Vertices];

// time at which train z starts a hub hub ride
var betweenTimes startsBetween[Trains];

// direct paths from Shipments
var bool direct[Trains, Shipments];

// train takes shipment and goes to hub
var bool takesForth[Trains, Shipments, Hubs];

// train takes shipment from hub
var bool takesBack[Trains, Shipments, Hubs];

// train takes shipment between hubs
var bool takesBetween[Trains, Shipments, Hubs, Hubs];

// second train depends on first for its front/back journey through h
var bool depFB[Trains,Trains, Hubs];

// second train depends on first for Hub Hub journey through h
var bool depFH[Trains,Trains, Hubs];

// second train depends on first for hub back journey through h
var bool depHB[Trains,Trains, Hubs];

// set branching priorities (we experimented with different settings here)
setting mipsearch{

forall (z in Trains, a in Arcs) {
setPriority(travelsForth[z,a],1);
setPriority(travelsBack[z,a],1);

};
};

minimize sum(z in Trains, h in Hubs, <u,v> in Arcs: v = h)
costPerEngine * travelsForth[z,<u,v>]

+ sum(a in Arcs, z in Trains)
(costPerKilometer* length[a] * (travelsBack[z,a] + travelsForth[z,a]))

+ sum(h in Hubs, hp in Hubs, z in Trains)
(travelsBetween[z,h,hp] * hubDistance)

+ sum(z in Trains, s in Shipments)
(directpathscosts[s.index] * direct[z,s])

subject to
{

// a shipment can only be taken by passing trains
forall(z in Trains, h in Hubs, v in Vertices, s in Shipments: v = s.start)

takesForth[z,s,h] <= sum(<i,v> in Arcs) travelsForth[z,<i,v>]
+ starts[z,v];

forall(z in Trains, h in Hubs, v in Vertices, s in Shipments: v = s.end)
takesBack[z,s,h] <= sum( <v, i> in Arcs) travelsBack[z,<v, i>]

+ ends[z, v];

forall(z in Trains, s in Shipments, h in Hubs, hp in Hubs)
takesBetween[z,s,h,hp] <= travelsBetween[z,h,hp];
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// each supply is taken back and forth
forall(s in Shipments)

sum(z in Trains, h in Hubs) takesForth[z,s,h]
+ sum(z in Trains) direct[z,s] >= 1;

forall(s in Shipments)
sum(z in Trains, h in Hubs) takesBack[z,s,h]

+ sum(z in Trains) direct[z,s] >= 1;

// any train does at most one direct path or one trip to the hub
forall(z in Trains) {

sum(s in Shipments) direct[z,s]
+ sum(<i,v> in Arcs: v in Hubs) travelsForth[z,<i,v>]=1;

sum(s in Shipments) direct[z,s]
+ sum(<v,i> in Arcs: v in Hubs) travelsBack[z,<v,i>] =1;

};

// inflow outflow trains at nodes
forall(z in Trains, v in Vertices: v not in Hubs)

sum(<i,v> in Arcs) tra velsForth[z,<i,v>] + starts[z,v] =
sum(<v,j> in Arcs) travelsForth[z,<v,j>]

+ sum(s in Shipments: s.start=v) direct[z,s];

forall(z in Trains, v in Vertices: v not in Hubs)
sum(<i,v> in Arcs) travelsBack[z,<i,v>]
+ sum(s in Shipments: s.end = v) direct[z,s] =
sum(<v,j> in Arcs) travelsBack[z,<v,j>] + ends[z,v];

// inflow outflow trains at hubs
forall(h in Hubs, z in Trains)

sum(<i,h> in Arcs) travelsForth[z,<i,h>]
+ sum(hp in Hubs) travelsBetween[z,hp,h] =

sum(<h,i> in Arcs) travelsBack[z,<h,i>]
+ sum(hp in Hubs) travelsBetween[z,h,hp];

// maximum Train length
forall(z in Trains) {

( sum(h in Hubs, s in Shipments) s.volume * takesForth[z,s,h] )
+ sum(s in Shipments) s.volume * direct[z,s] <= maxTrainLength;

( sum(h in Hubs, s in Shipments) s.volume * takesBack[z,s,h] )
+ sum(s in Shipments) s.volume * direct[z,s] <= maxTrainLength;

sum(h in Hubs, hp in Hubs, s in Shipments)
s.volume * takesBetween[z,s,h,hp] <= maxTrainLength};

// inflow outflow shipments at hubs
forall(h in Hubs, s in Shipments)

sum(z in Trains) takesForth[z,s,h]
+ sum(t in Trains, hp in Hubs: hp<>h)

takesBetween[t,s,hp,h] =
sum(z in Trains) takesBack[z,s,h]

+ sum(t in Trains, hp in Hubs: hp<>h) takesBetween[t,s,h,hp];

// couple takesForth (takesBack) w/ travelsforth (travelsBack) at hubs
forall (h in Hubs, z in Trains, s in Shipments){

takesForth[z,s,h] <= sum(<u,v> in Arcs: v=h) travelsForth[z,<u,v>];
takesBack[z,s,h] <= sum(<u,v> in Arcs: u=h) travelsBack[z,<u,v>];
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};

// Capacity at hubs
// is not modeled here!!

// time windows
forall(z in Trains, s in Shipments)

arrivesForth[z,s.start] + (1- sum(h in Hubs) takesForth[z,s,h]) * MtwD
>= s.earliestDeparture;

forall(z in Trains, s in Shipments)
arrivesForth[z,s.start] - (1-sum(h in Hubs) takesForth[z,s,h]) * MtwD

<= s.latestDeparture;

forall(z in Trains, s in Shipments)
arrivesBack[z,s.end] + (1- sum(h in Hubs) takesBack[z,s,h]) * MtwA

>= s.earliestArrival;

forall(z in Trains, s in Shipments)
arrivesBack[z,s.end] - (1- sum(h in Hubs) takesBack[z,s,h]) * MtwA

<= s.latestArrival;

// trains start and end at most once
forall(z in Trains)

sum(v in Vertices) starts[z,v] <= 1;

forall(z in Trains)
sum(v in Vertices) ends[z,v] <= 1;

// time consistency at nodes
// pure travel time (not redundant!)

forall(z in Trains, <i,v> in Arcs)
Mtc * (1 - travelsForth[z,<i,v>]) + arrivesForth[z,v]

>= arrivesForth[z,i] + times[<i,v>];

// + shunting time
forall(z in Trains, s in Shipments, <u,v> in Arcs: u=s.start)

Mtc * (1 - travelsForth[z,<u,v>]) + arrivesForth[z,v] >=
arrivesForth[z,u] + times[<u,v>]

+ sum(h in Hubs) (takesForth[z,s,h] * shuntingTime);

// pure travel time (not redundant!)
forall(z in Trains, <i,v> in Arcs)

Mtc * (1 - travelsBack[z,<i,v>]) + arrivesBack[z,v]
>= arrivesBack[z,i] + times[<i,v>];

// + shunting time
forall(z in Trains, s in Shipments, <u,v> in Arcs: u = s.end)

Mtc * (1 - travelsBack[z,<u,v>]) + arrivesBack[z,v] >=
arrivesBack[z,u] + times[<u,v>]

+ sum(h in Hubs) takesBack[z,s,h] * shuntingTime;

// time consistency at hub wrt trains
forall(h in Hubs, z in Trains, zp in Trains)

Mdep * (1 - depFB[z,zp,h]) + arrivesBack[zp,h]
>= arrivesForth[z,h] + hubShuntingTime;
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forall(h in Hubs, z in Trains, zp in Trains)
Mdep * (1 - depFH[z,zp,h]) + startsBetween[zp]

>= arrivesForth[z,h] + hubShuntingTime;

forall(h in Hubs, z in Trains, zp in Trains)
Mdep * (1 - depHB[z,zp,h]) + arrivesBack[zp,h]

>= startsBetween[z] + hubShuntingTime + hubTravelTime;

// dependence on engine
forall(z in Trains, h in Hubs)

depFB[z,z,h] >= sum(<i,h> in Arcs) travelsForth[z,<i,h>]
+ sum(<h,i> in Arcs) travelsBack[z,<h,i>] - 1;

forall(z in Trains, h in Hubs)
depFH[z,z,h] >= sum(<i,h> in Arcs) travelsForth[z,<i,h>] +

+ sum(hp in Hubs) travelsBetween[z,h,hp] - 1;

forall(z in Trains, h in Hubs, s in Shipments)
depHB[z,z,h] >= sum(<h,i> in Arcs) travelsBack[z,<h,i>]

+ sum(hp in Hubs) travelsBetween[z,hp,h] - 1;

// couple dep and takesforth / back
forall(z in Trains, zp in Trains, s in Shipments, h in Hubs) {

depFB[z,zp,h] >= takesForth[z,s,h] + takesBack[zp,s,h] - 1;
depFH[z,zp,h] >= takesForth[z,s,h]

+ sum(hp in Hubs) takesBetween[zp,s,h,hp] - 1;
depHB[z,zp,h] >= sum(hp in Hubs) takesBetween[z,s,hp,h]

+ takesBack[zp,s,h] - 1};

// symmetry breaking constraints
forall(z in Trains, zp in Trains: z < zp)

sum(v in Vertices) starts[z,v] >= sum(v in Vertices) starts[zp,v];

forall(v in Vertices, z in Trains, zp in Trains: z < zp)
sum(vp in Vertices: vp <= v) starts[z,vp]

>= sum(vp in Vertices: vp <= v) starts[zp,vp];

// basic initializations

forall(h in Hubs, z in Trains)
travelsBetween[z,h,h] = 0;

// some valid inequalities

forall(z in Trains)
sum(h in Hubs, hp in Hubs) travelsBetween[z,h,hp] <= 1;

forall(z in Trains, s in Shipments)
sum(h in Hubs, hp in Hubs: h<>hp) takesBetween[z,s,h,hp] <= 1;

forall(z in Trains, zp in Trains){
sum(h in Hubs) depFB[z,zp,h] <= 1;
sum(h in Hubs) depFH[z,zp,h] <= 1;
sum(h in Hubs) depHB[z,zp,h] <=1;

}
};

////////////////
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// OUTPUT //
////////////////

display(z in Trains, s in Shipments: direct[z,s]>0 ) direct[z,s];
display(z in Trains, a in Arcs: travelsForth[z,a]>0) travelsForth[z,a];
display(z in Trains, a in Arcs: travelsBack[z,a]>0) travelsBack[z,a];
display(z in Trains, v in Vertices: arrivesForth[z,v]>0) arrivesForth[z,v];
display(z in Trains, v in Vertices: arrivesBack[z,v]>0) arrivesBack[z,v];
display(z in Trains: startsBetween[z]>0) startsBetween[z];
display(z in Trains, s in Shipments, h in Hubs: takesForth[z,s,h]>0)

takesForth[z,s,h];
display(z in Trains, s in Shipments, h in Hubs: takesBack[z,s,h]> 0)

takesBack[z,s,h];
display (z in Trains, s in Shipments, h in Hubs, hp in Hubs:

takesBetween[z,s,h,hp]>0) takesBetween[z,s,h,hp];
display(z in Trains, zp in Trains, h in Hubs: depFB[z,zp,h]>0) depFB[z,zp,h];
display(z in Trains, zp in Trains, h in Hubs: depFH[z,zp,h]>0) depFH[z,zp,h];
display(z in Trains, zp in Trains, h in Hubs: depHB[z,zp,h]>0) depHB[z,zp,h];
display(z in Trains, h in Hubs, hp in Hubs: travelsBetween[z,h,hp]>0)

travelsBetween[z,h,hp] ;
display(z in Trains, v in Vertices: starts[z,v]>0) starts[z,v];
display(z in Trains, v in Vertices: ends[z,v]>0) ends[z,v];
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1994.

[127] Robert J. Vanderbei.Linear Programming, Foundations and Extensions.
Kluwer, 2nd edition, 2001.

[128] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[129] T. S. Wee and M. J. Magazine. Assembly line balancing asgeneralized
bin-packing.Operations Research Letters, 1:56–58, 1982.



www.manaraa.com

190 Bibliography

[130] Ingo Wegener.Complexity Theory. Exploring the Limits of Efficient Algo-
rithms. Springer-Verlag, 2005.

[131] Emo Welzl. Boolean satisfiability—combinatorics andalgorithms. un-
published lecture notes, 2005.

[132] Douglas B. West.Introduction to Graph Theory. Prentice Hall, 2nd edi-
tion, 2001.

[133] Laurence A. Wolsey.Integer Programming. Discrete Mathematics and
Optimization. Wiley, 1998.

[134] Jian Yang and Joseph Y.-T. Leung. The ordered open-endbin-packing
problem.Operations Research, 51(5):759–770, 2003.



www.manaraa.com

Curriculum Vitae
Marc Nunkesser

born on May 29, 1976 in Dortmund, Germany

2002 – 2006 PhD Student at ETH Zürich
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