DISS. ETH No. 16774, 2006

Algorithm Design and Analysis of Problems in
Manufacturing, Logistics, and Telecommunications:

An Algorithmic Jam Session

A dissertation submitted to the
Swiss Federal Institute of Technology, ETH Zurich
for the degree of Doctor of Sciences

presented by
Dipl. Inform. Marc Nunkesser
born May 29, 1976 in Dortmund, Germany

accepted on the recommendation of

Prof. Dr. Peter Widmayer, ETH Zirich, examiner

Dr. Thomas Erlebach, University of Leicester, co-examiner
Dr. Riko Jacob, ETH Zurich, co-examiner

Abstract

The focus of this thesis is on algorithmic questions thatdirectly linked to
practical problems from diverse applications like mantifeng, train schedul-
ing or telecommunications. We present four problem sedtingether with com-
binatorial problems (or mathematical models) that areattre of the practical
applications. From this we derive both interesting thécaétind relevant prac-
tical results, which we back up by experiments. In detad,ttipics of this thesis
are as follows.

Sequential Vector Packing We study a novel variant of the well knowidi-
mensional bin (or vector) packing problem that is motivatgdan appli-
cation from the manufacturing industry. Given a sequenc®afnegative
d-dimensional vectors, the goal is to pack these into as few & possi-
ble. In the classical problem the bin size vector is given thiedsequence
can be partitioned arbitrarily. We study a variation whéxe vectors have
to be packed in the order in which they arrive. The bin sizeéarecan be
chosen once in the beginning, under the constraint thatthelmate-wise
bounds sum up to at most a given total bin size. We give botbrétieal
results and practical algorithms that we test on the orlglata.

Optimization of a Freight Train System We consider the optimization of a
Swiss freight train service that is operated as a (multif) fipoke system.
This can be seen as a more complicated version of classic@leeouting
problems. We derive several mathematical models, consatae theoret-
ical questions linked to the operations at the hub, and t@strmdels on
the real-world instance. For the mathematical models wdinsar pro-
gramming based optimization techniques like branch anduwedtcolumn
generation.

OVSF Code AssignmentOrthogonal Variable Spreading Factor (OVSF-) codes
are used in UMTS to share the radio spectrum among sevemaéctions
of possibly different bandwidth requirements. The comtarial core of
the OVSF code assignment problem is to assigh some node®of@ate
binary tree of height (the code tree) ta simultaneous connections, such
that no two assigned nodes (codes) are on the same roaftpdth. A
connection that uses 2 ¢ fraction of the total bandwidth requires some
code at deptld in the tree, but this code assignment is allowed to change
over time. We consider the one-step code assignment prolékren an
assignment, move the minimum number of codes to serve a ripvese
Minn and Siu propose the so-called DCA-algorithm to solee phoblem

optimally. In contrast, we show that DCA does not alwaysnrean opti-
mal solution, and that the problem is NP-hard. We presenttsesn exact,
approximation, online, and fixed parameter tractable @lyois.

Joint Base Station SchedulingConsider a scenario where base stations need to
send data to users with wireless devices. Time is discreteslatted into
synchronous rounds. Transmitting a data item from a baserstn a
user takes one round. A user can receive the data item fronofatine
base stations. The positions of the base stations and usersaaleled
as points in the Euclidean plane. If base stafidransmits to uset in
a certain round, no other user within distance at njjdst w||> from b
can receive data in the same round due to interference pheranThe
goal is to minimize, given the positions of the base statemd users, the
number of rounds until all users have their data. We callphiblem the
Joint Base Station Scheduling Problem (JBS) and considar the line
(1D-JBS) and in the plane (2D-JBS). We study the compleXi®»JBS
and approximation algorithms for both variants. Moreowveg, analyze
a special graph class afrow graphsthat arises in the one-dimensional
setting.

Zusammenfassung

Im Mittelpunkt dieser Arbeit stehen algorithmische Fragdia durch praktische
Probleme aus verschiedenen Gebieten wie Fertigung, Ztiga@pung oder Te-
lekommunikation motiviert sind. Wir stellen vier Anwendyen vor und dazu je-
weils ein kombinatorisches Problem (oder ein mathematiséhodell), das den
Kern dieser Anwendung ausmacht. Daraus entwickeln wir sbtheoretisch in-
teressante als auch praktisch relevante Resultate, diealirdurch Experimente
untermauern. Im Detail betrachten wir die folgenden Themen

Sequentielles Vector PackingWir untersuchen eine neuartige Variante des be-
kanntend-dimensionalen Bin (oder auch Vector) Packing Problems; we
che durch eine Anwendung aus der Fertigung motiviert isgeben sei
eine Sequenz von nicht-negativérdimensionalen Vektoren. Die Aufga-
be besteht darin, diese in so wenig Bins (,,Kisten”) wie hofigzu packen.
Beim klassischen Bin Packing ist der Bin-Grossenvektgepen und die
Sequenz kann beliebig angeordnet werden. Wir untersudhenvariati-
on, bei der die Vektoren in der durch die Sequenz gegebenéeiielge
in die Bins gepackt werden mussen. Die Bin-Grosse kansraysfgewahlt
werden, mit der Einschrankung, dass ihre koordinaterevismme ei-
ne vorgegebene Grosse nicht Uberschreiten darf. Waeptéeren sowohl
theoretische Resultate als auch praktische Algorithmenwit auf den
realen Daten testen.

Optimierung eines FrachtbahnsystemsWir betrachten die Optimierung eines
Schweizer Frachtbahnsystems, das als (Multi-) Nabe-8p&gstem ope-
riert. Das Problem kann als kompliziertere Variante klsdsér Vehicle
Routing Probleme gesehen werden. Wir entwickeln eine Sequen ma-
thematischen Modellen fur das Problem, betrachten eitligeretische
Fragestellungen beziiglich des Ablaufs an der Nabe urehtestsere Mo-
delle auf der realen Instanz. Fur die mathematischen Nedenutzen
wir Optimierungstechniken, die auf linearer Programnmerberuhen wie
branch and cut oder column generation.

OVSF Code Zuweisung Orthogonal Variable Spreading Factor (OVSF-) Codes
werden in UMTS Netzwerken benutzt, um es den verschiedeeantB
zern innerhalb einer Funkzelle (mit potentiell verschregleBandbreiten-
anforderungen) zu ermoglichen, gleichzeitig auf die emdene Bandbrei-
te zuzugreifen. Der kombinatorische Kern des OVSF Codee&fsungs-
problems besteht darin, Knoten eines vollstandigenrem®aumes (der
Code-Baum) der Hohé einer Menge vom aktiven Verbindungen zu-

zuweisen, so dass keine zwei zugewiesenen Knoten (Codedmusel-
ben Wurzel-Blatt Pfad sind. Eine Verbindung, die einen Anten 2—¢

an der gesamten Bandbreite bendtigt, muss einen Code éfx dlim

Code-Baum zugewiesen bekommen. Diese Zuweisung ist nighédn-
dern kann sich mit der Zeit andern. Wir betrachten das Eim+8 Code-
Zuweisungsproblem: Gegeben eine Code-Zuweisung, beviegamima-
le Anzahl von Codes, um eine neue Anfrage zu bedienen. MinSin
haben den so genannten DCA-Algorithmus vorgestellt, umRtablem
optimal zu l6sen. Demgegeniber zeigen wir, dass DCA ninhter die
optimale Losung liefert und dass das Problem NP-hart igtgében Re-
sultate zu exakten, approximations-, online- und fixedxpeater Algorith-
men.

koordiniertes Funkmast Scheduling Wir betrachten ein Szenario, in dem
Funkmasten Daten an Benutzer mit Mobilgeraten sendemdarem Mo-
dell betrachten wir die Zeit als diskretisiert und in Rundsgmentiert.
Die Ubertragung eines Datenpakets von einem Funkmasten zm &ae
nutzer benotigt eine Runde. Ein Benutzer kann Daten vaenjeldunkma-
sten empfangen. Die Positionen der Funkmasten und Benuézden als
Punkte in der Euklidischen Ebene betrachtet. Wenn in ein@dB Funk-
mastb an Benutzer, sendet, kann kein anderer Benutzer innerhalb einer
Distanz von||b — ul|2 von b ein Datenpaket empfangen, weil das Senden
anwu zu Interferenz in diesem Bereich fuhrt. Das Ziel bestemindldiir
eine gegebene Konfiguration von Benutzern und FunkmasteSeaden
von Daten so zu koordinieren, dass eine minimale Anzahl vonden
benotigt wird, um alle Benutzer zu bedienen. Wir nenneseidProblem
koordiniertes Funkmast Scheduling (JBS) und betrachteesiner Ge-
raden (1D-JBS) und in der Ebene (2D-JBS). Wir untersucheKdmple-
xitat von 2D-JBS sowie Approximationsalgorithmen fuideeVarianten.
Daruber hinaus analysieren wir die Graphklasseadew graphs die sich
als Konfliktgraph in der eindimensionalen Variante ergibt.

Acknowledgement

One of the good things about doing this PhD thesis has beéhrdraly thought
about it as the “work” that | have to do. The main reason whyeiad it mostly
felt like real fun to do it were the many interesting, creatnd enjoyable people
with whom | had the pleasure to cooperate. | would like to egpmy gratitude
to

Peter Widmayer, my supervisor, for his support and advicd far the freedom
he granted me;

Thomas Erlebach, my co-examiner, for fruitful researchussions, a nice month
in Leicester, and the most thorough proof-checking;

Riko Jakob, my co-examiner, for many interesting ideas;

my other co-authors Christoph Ambuhl, Michael Gatto, AldAall,
Mat(s Mihakk, Daniel Sawitzki, Gabor Szabb, for doing researclwwie;

all (former) members of our research group Luzi AndereggrkMaieliebak,
Jorg Derungs, Stephan Eidenbenz, Michael Gatto, Beatdif8arbara Heller,
Fabian Hennecke, Tomas Hruz, Zsuzsanna Lipték, Leon iRBeé&taolo Penna,
Conrad Pomm, Franz Roos, Konrad Schlude, Christoph Stantiag ¥cari,
Mirjam Wattenhofer, Birgitta Weber for a good time at ETH,;

Tobias Achterberg, for support and the addition of feattwdss SCIP library;
Alberto Ceselli, for cooperating on the SBB project and &g to Milano;

the research group of Rolf Mohring, in particular Marcobbi&cke and Heiko
Schilling for hosting me in Berlin and cooperating with me;

Ted Ralphs, for introducing me to his SYMPHONY library;
Kathrin Schulte and the SBB Cargo Team for a pleasant cotipara

and finally, my family and my friends in Zurich and the resttloé world for a
nice time without computer science.

Vi

Contents

1 Introduction 1
2 Preliminaries 7
3 Sequential Vector Packing 13
3.1 Introduction 13
3.1.1 Modeland Notation 14
3.1.2 RelatedWork o 15
3.1.3 SummaryofResults 16
3.2 Approximation Algorithms 16
3.2.1 ILPFormulation 17
3.2.2 Aneasy i, -)-Approximation. 18
3.2.3 A(1,2)-Approximation 20
3.3 Complexity Considerations 24
3.3.1 Minimizing the Number of Breakpoints (Bins) 24
3.3.2 Polynomially Solvable Casesand FPT 27
3.4 Practical Algorithms 27
3.4.1 GreedyAlgorithms 27
3.4.2 EnumerationHeuristic 30
3.4.3 Enumeration, 31
3.4.4 Evaluation 32
3.5 Experiments. 35

3.5.1 MixedIntegerProgram 36

ii Contents
3.5.2 Setup and Computational Results 37
3.6 OpenProblems 38
4 Foundations of LP-based Optimization Techniques 41
4.1 Background 41
4.2 Duality e 42
4.3 Simplex Algorithm 44
4.4 Dual Simplex Algorithm L 50
4.5 Polyhedral Theory 50
46 Branch-and-Cut 53
4.7 IPColumnGeneration 56
5 Optimizing a Hub and Spoke Railway System 61
5.1 Introduction 61
5.2 Problem Description 62
53 Models 64
5.3.1 ScopeoftheModels 64
5.3.2 CommonNotation 64
54 ModelO 66
55 Modell 67
551 Routing 68
55.2 Scheduling 69
55.3 Branchand CutApproach 70
56 Model2 78
5.6.1 MasterProblem., 78
56.2 Pricing 82
5.6.3 Acceleration Techniques 84
5.6.4 Heuristics o 86
5.6.5 FarkasPricing 87
56.6 Branching. 88
5.7 Shuntingand Scheduling 89

5.7.1 Hardness of Directed Minimum Cut Linear Arrangement9 8
5.7.2 Solving the TSSP Problem in Practice 93

Contents iii

5.7.3 Optimal Grouping of Shunting Operations 94
58 Experiments. 99
581 Instance 99
582 ModelO. 101
583 Modell....... 102
5.8.4 TSSP Instance and Overall Solution 103
585 Model2. 103
59 RelatedWork 104
5.10 SummaryofResults. 105
5.11 OpenProblems 106
6 OVSF Code Assignment 107
6.1 Introduction 107
6.1.1 RelatedWork 109
6.1.2 Modeland Notation 110
6.1.3 SummaryofResults 111
6.2 Properties of OVSF Code Assignment 113
6.2.1 Feasibility. L 113
6.2.2 Irrelevance of Higher LevelCodes 114
6.3 One-StepOffineCA 116
6.3.1 Non-Optimality of Greedy Algorithms 116
6.3.2 NP-Hardness 117
6.3.3 Exact® Algorithm 122
6.3.4 h-Approximation Algorithm 123
6.4 Fixed Parameter Tractability of the Problem 128
6.5 OnlineCA e 130
6.5.1 Compactrepresentation algorithm 131
6.5.2 Greedystrategies 133
6.5.3 Minimizing the number of blocked codes 134
6.5.4 Resource augmented online-algorithm 138
6.6 OpenProblems 139

iv Contents

7 Joint Base Station Scheduling 141
7.1 Introduction 141
7.1.1 RelatedWork 0. 143
7.1.2 Modeland Notation 144
7.1.3 SummaryofResults 146
7.2 1D-IJBS 147
7.2.1 Relationto Other GraphClasses 147
7.2.2 1D-JBS with Evenly Spaced Base Stations 150
7.2.3 3k Users3 Base Stationsik Rounds 153
7.2.4 Exact Algorithm for thé&-Decision Problem 154
7.2.5 Approximation Algorithm 157
7.2.6 Different InterferenceModels 159
7.3 2D-IBS . . . 161
7.3.1 NP-Completeness of the2D-JBS Problem 161
7.3.2 Bounded Geometric Constraints 162
7.3.3 General2D-JBS 163
7.4 OpenProblems 164
8 Summary of contributions 165
A Information on Experiments 169
A.1 Setting for Computational Experiments 701

A.2 ILPFormulation., 171

Chapter 1

Introduction

The cocktail party problem Have you ever tried to explain to the “average guy
on the street” what a theoretical computer scientist alstulles? Then maybe
this cocktail party conversation sounds familiar to you.

Alice: “So what exactly is it that you do as a theoretical carntep scientist?”

Bob: “We explore the limits of computability, what you canngpute and
what you can’t. At the same time we try to invent efficient $ioln methods for
fundamental problems.”

Alice: “What is a fundamental problem?”

Bob: “For example sorting a sequence of numbers, finding & gacking of
objects into a bin, or finding a cheap tour through a network.”

Alice: “Aha.”

| have made the experience that the significance of abstradaimental al-
gorithmic problems is hard to grasp for most non-comput@mists, even if
these problems occur in many places in various disguises pdrsonally, | find
it often more motivating to directly start with a practicabplem, to try to solve
it with the algorithmic tool kit and on the way formulate anolefully solve the
underlying “fundamental” problem. It is this approach thal to adopt in this
thesis.

We will encounter four such practical problems and algamnithquestions
that are motivated by these problems. An ideal goal wouldobeetelop for
each given problem both interesting and new algorithmiohand a practical
solution that uses this new theory and completely solvepthetical problem.
However, it is not a secret that different problems lend tbelwes more or less

1

2 Chapter 1. Introduction

well to practical or theoretical advances. There is oftemetrade-off between
the desired high level of detail of a practical model vergigsrhaximum level of
detail for which we can prove theorems in a theoreticalsgitFor this reason,
varying emphasis will be given to the practical and theoedtaspects of the
different problems.

It is also true that different algorithmic problems nectsi different algo-
rithmic techniques, be it because the theoretical coreeptioblem lends itself
well to the application of a particular technique or becatigeapplication de-
mands a certain type of result that can only be delivered megechniques. For
that reason, we will see in this thesis a tour d’horizon ofesti#-the-art algo-
rithm design and analysis techniques, which are applieddabworld problems:
Approximation algorithms, online algorithms, linear pramming based opti-
mization and a few results on fixed-parameter tractability.

In the following we give a short overview of the four probletiat are studied
in this thesis.

Sequential vector packing This problem seems to be one of the few excep-
tions to the above rule about the trade-off between theodypaactice. An in-
dustry partner described a setting to us that led to a cleaubit@torial problem
from the start. As a small letdown, we are not allowed to dbedhe underlying
application but we give a similar application in Chapter 8 give an alternative
motivation here: Assume you want to spray a long text on a wsltig stencils
for the letters and spray color. You start from the left angkasble as much of
the beginning of the text as you have matching stencils at gigposal. Then
you mask the area around the stencils and start sprayingrwtds, you re-
move the stencils again. In the next steps you iterate thisgature starting from
the last letter that was sprayed until the whole text is fieishThe sequential
vector packing problem can be formulated as the followingstion: Assume
you have bought enough material to cut out a fixed nunibef stencils before
you start. How many stencils of each letter do you cut out @eoto minimize
the steps that you need to spray the whole text? We deal wghgtlestion in
Chapter 3, where we formulate it as a novel vector packindlpro. We give
an NP-hardness proof and develop a (bicriteria) approxamatlgorithm that
is based on LP-rounding and some structural insights, anplgge and analyze
some practical heuristics for the problem. Finally, we presexperiments on
real-world data that substantiate that our approachedisamtly improve over
the previous attempts to produce solutions to the problem.

Optimizing a freight railway system Railway systems pose a multitude of
interesting optimization problems. We consider a freighitt service that is op-
erated as a (multi-) hub and spoke system. For that systemanetw/find good
routes for the trains to go to and from the hubs and also a gduetisile for these
trains. The routes and the schedule are subject to vari@cdiqgal constraints
that make the minimization of the overall cost of a solutiochallenging task.
We present a sequence of models with which we tackled thdgmoand some
preliminary experimental results with real world data. Waimly use LP-based
optimization techniques like branch-and-cut and colummegation. The foun-
dations of these techniques are presented in a separatecchEpe emphasis in
this chapter is on the modeling aspect, which sets it off ftbenother chapters,
where the model is usually both simple and well-defined frbengtart. For the
implementation of our algorithms we use state-of-the-ibraties. In particu-
lar, we are the first to use the SCIP library [3] for a columnegation approach.
Apart from the more practical results, we also analyze s@peds of the under-
lying scheduling and shunting problems from a more theoaéfioint of view. It
turns out that one of these “fundamental problems” in atgarics, the min-cut
linear arrangement problem, occurs at the core of the stingdaroblem at the
shunting yards.

OVSF-code assignment In telecommunications, there are several technologies
that allow different users in one cell of a radio network t@aghthe common
bandwidth. In UMTS the so called Wideband Code Division Nlét Access
(WCDMA) method is used, which assigns different orthog@paitading (chan-
nelization) codes to the users in one cell. One type of sudesare Orthogonal
Variable Spreading Factor codes (OVSF) that can be thodgt® being derived
from a binary code tree, where each node of the tree corresptona code.
Users request different bandwidths which correspond terdift levels in the
code tree. In order for the orthogonality property to holere can be at most
one assigned code on each path from the root of the tree tocdatshleaves.
In a dynamic setting where users arrive and depart, thuest@und return such
codes, the code tree can get fragmented. It can then hapaearttadditional
request cannot be served because the currently active btmbsall root-to-leaf
paths on the requested level, even though there is enouglwizith available.
In such a situation, the active users get assigned new codeshe assigned
codes in the tree are changed, such that the additional seqar be served.
This induces a communication overhead for each changed cbuaerefore, it
is an interesting question, how one can minimize the numbeecessary reas-
signments. One algorithmic question here is how one canmmiuei the number
of necessary code changes for a given assignment. Minn angr§pose the

4 Chapter 1. Introduction

Round 1 Round 2

o
io A
Scenario @ @ .

Scenario B ‘. @ .

Figure 1.0.1: Two scenarios for coordination of transmission betweerelsis-
tions. In Scenario A an interference problem arises in theosd round (red
box). In Scenario B the four users can be served in two roucusently served
users depicted as green boxes).

so-called DCA-algorithm to solve the problem optimally [93n contrast, we
show that DCA does not always return an optimal solution, tiadl the prob-
lem is NP-hard. We also tackle the problem from other andfés.investigate
approximation algorithms, and also consider the very @hturline setting.

Joint base station scheduling A second technology to share the common band-
width between users in one cell of a telecommunications owktvg Time Divi-
sion Multiple Access (TDMA), in which time is slotted intorsghronous rounds
and each user is assigned a slot. We consider some thebpetiblems that are
motivated by an idea of Das, Viswanathan and Rittenhouskg Y3 propose
to coordinate the assignment of users to base stationsreaise throughput and
minimize interference. The coordination makes sense lsecaiithe power con-
trol mechanism of the base stations. Roughly speaking, dise btations adapt
their signal-strength to the distance to the user that igeskin the current time
slot. The signal strength of a base station represents bakd noise for the
other base stations and can lead to interference probleanghi§ reason, coor-
dination can make sense: Consider the very simple settiRggure 1.0.1, which
also illustrates our basic model. Two base stations (cspsme to serve four
users (boxes) with unit demand. Base stations and usersateled as points
in the Euclidean plane. Our model of signal strength andfetence are signal
and interference disks. This means that in Scenario A thebtwge stations first
serve the close by users without causing any interferencehd second time

slot they try to serve the far away users, but this causedgrah because the
left user is covered by two disks which leads to interfererineour model this
means that the user cannot receive the signal. In Scenalhis Bdes not happen.
The base stations schedule the transmissions in such a agegdhinterference
is caused. Observe that even if the interference diskssietein the first step in
B this causes no problem because no user that is currentlydser contained in
the interference region. Starting from this basic modelinwestigate some algo-
rithmic problems defined on such interference disks in oretan dimensions.
We relate the one-dimensional problem to a coloring probfeenspecial graph
class which we calirrow graphs analyze some special cases, and also consider
the complexity of the two-dimensional problem. We give dienggoproximation
algorithms for both the one- and the two-dimensional pnoble

Outline of the thesis and research contributions In this thesis the above four
problems will be considered. In a final chapter the main tesflthe thesis are
summarized. Some of the material covered has also beerspedlin conference
proceedings or in journals, see [51, 53, 63]. Chapter 3 isdas unpublished
material and Chapter 5 extends the preliminary resultseptes in [63]. All of
this work was done in collaboration with different co-authoFor this reason,
the topics presented here will also partly be subject of ratheses. For better
readability, | will cover the complete results for each toput refer to a thesis
of a co-author for some of the proofs. In general, | will egjly point out
if the topic of a chapter is also covered in another thesisexpdain my main
contribution.

Chapter 2

Preliminaries

In this chapter we briefly review some basic definitions anththen that are
used throughout this thesis. With the exception of LP-bagsuhization tech-
niques, which are introduced separately in Chapter 4, wenasshat the reader
is familiar with the basic concepts from complexity thealgorithm design and
combinatorial optimization. There are numerous textbavkthese subjects, see
for example [11, 80, 38, 35].

Graphs A graphG = (V, E) is a pair of anode sef” and aredge set?. For
undirectedgraphs each edgec E is a two element subset ®f, containing the
endpointof e. Fordirectedgraphs, each edgec E is a pair(u,v),u € V,v €
V,u # v, of tail andheadof ¢, so that in particulafu, v) # (v,u). A walkin a
graph is an alternating list, e1, v1, . . ., ex, vx Of nodes and edges such that for
1 <4 < k edgee; has endpoints;_; andv;. A trail is a walk with no repeated
edge. Apathis a walk with no repeated node. In the literature the definitf
paths is a bit ambiguous. Other authors take the definitiomadifs or trails for
paths and call the paths as they are defined bienpleor alsoelementary In
places where we want to emphasize that a path is indeed ef@meme will also
use this term. A, v-pathis a path starting at nodeand ending at. For further
standard graph-theoretic terminology, see the book by Y¥8&{.

Basic complexity theory There are many equivalent ways to define the basic
concepts of complexity theory. Probably the most standag i&/via nondeter-
ministic Turing machines, see [62]. We give a very shortidtrction based on
the certificate view on NP, following loosely [131].

7

8 Chapter 2. Preliminaries

An alphabet is a finite set of symbols,* denotes the set of all finite strings
(orwordg of symbols inX. A languageis a (possibly infinite) subset af*. An
algorithmas we view it here maps every € ¥* to YES or NO, i.e., itaccepts
orrejectsw. Deciding whether a givew is contained in a languagdeis called a
decision problem

The class P (of polynomially recognizable languages) isstteof all lan-
guagesL over {0, 1}, such that there is a polynomial time algorithénwith
L = {w | A acceptsv}. Polynomial timemeans that there is a polynomjal
such thatA terminates on any input in at mgsf (Jw|) steps.

A verifier for a languagel is an algorithmV" such thatL = {w | 3¢ €
{0,1}* : V acceptgw, c)}. If V acceptgw, ¢) the stringe is called acertificate
for membership ofv in L. The class NP is the class of all languages for which
there is a verifier with a polynomial running time in the lemgbf the words in
L.

Defining languages on the alphalét 1} is not a real restriction. A typical
instance of a combinatorial problem consists of variouaipeters and data items
(like a graph), which can all be encoded as bitstrings on lifieadet{0, 1}.

A languagel; is polynomial time reducibléo languagel,, in symbols
L, <p Lo, if there is a polynomial time computable functign: {0,1}* —
{0,1}* such thatw € L, ifand only if f(w) € Ls. In short, we also say;; can
be reduced td..

A decision problent. is NP-hardif for all L’ € NP the decision problery’
can be reduced tb; if additionally L € NP, thenL is NP-complete

A famous theorem by Cook states that the satisfiability polfor Boolean
formulas is NP-complete [34]. The NP-hardness of a probleakes the exis-
tence of efficient, i.e., polynomial time algorithms for ighly unlikely: Under
the largely believed hypothesis éf 4 NP it holds that no polynomial time
algorithm for an NP-hard problem can exist. Strictly spagkiwe make the
implicit assumption here that Turing machines and modenmmgers are equiv-
alent with respect to polynomial time computations. Thisuasption is the fa-
mousextended Church-Turing Thesisor a more thorough introduction to the
theory of NP-completeness, see the book by Garey and Jofé&jon

Approximation and online algorithms In a typical application one is not so
much interested in a decision problem but rather iptimization problemthe
goal of which is to minimize or maximize the value of an obijextfunction
that is defined on the feasible solutions of the problem. Adscoptimization
problems the notion of NP-hardness can be defined. It suffcekefine the
decision problenil,; associated with an optimization probldin Typically, one

takes the question whether there are instances with antejeealue better than
a valuek (given in the input) as this decision problem. The NP-hasdnaf
an optimization problem is then equivalent to the NP-hasdrtd the associated
decision problem, see [11] for a more formal definition.

For such NP-hard optimization problems the existence dfiefft, i.e., poly-
nomial exact algorithms is again ruled out under the assompuif P # NP.
For this reason, researchers have develgggatoximation algorithmshat do
not necessarily find the optimum solution to an optimizapiomblem but one for
which the solution is in all cases provably only off by sometéap. Let A be
a polynomial time algorithm and denote By T) the objective value returned by
A oninstancd, further denote by OR(T) the value of the optimum solution on
1. We say thatd is a p-approximation algorithnif there exists a constaktsuch
that for all instanceg it holds that

A(I) < p- OPT(I) + k for a minimization problem

and
OPT(I) < p- A(I) + k for a maximization problem.

The valuep is called theapproximation ratid of the algorithm, it is always
greater or equal to 1. Just as NP-hardness results rule ®ekistence of poly-
nomial time exact algorithms, it is possible to shioapproximability resultshat
rule out approximation algorithms with approximation oatbetter than a given
value or function.

In real-world applications it is often the case that the clatginput is not
available at the time when an algorithm is called. Data amiver time in an input
sequence and the algorithm might have to react online. Aorighgm Ao, that
operates in such a setting is calledaline algorithm An established method
to evaluate the performance df,, is similar to the analysis of approximation
algorithms. The objective function value of the solutioatth,, generates at the
end of the input sequendeis compared to the optimal objective function value
OPT(I). We say thatd,n is p-competitivef there exists a constaitsuch that
for each instancé

Aon(I) < p- OPT(I) + k for a minimization problem

and
OPT(I) < p- Aon(I) + k for a maximization problem.

1The above definition is again a bit ambiguous in the liteet@ther authors take the definition
for minimization problems also for maximization problemK.is also common to leave out the
constant: and to call the approximation ratio as defined abasgmptotic approximation ratio

10 Chapter 2. Preliminaries

The valuep is called thecompetitive ratio It is common to think of the input
sequence as a sequence being generated by a (maliatessary

Sometimes itis hard to achieve satisfactory approximattinos or competi-
tive ratios. In this case it can make sense to compare theitllgoto an optimal
algorithm that works on a more constrained input, or, edeiviy to allow the
algorithm to use more resources than the optimal algorithlistorically, such
algorithms are calleficriteria approximation algorithméor the approximation
ratio andresource augmented algorithritsthe online setting, which is also the
terminology used in this thesis. In the literature the udag®t clear-cut, how-
ever.

Definition 2.1 (Bicriteria Approximation, Resource Augmertation) Given a
minimization problem with instancd$r) that comprise as one input parameter
r the available amount of some resource. An algorithns a bicriteria («, 3)-
approximation algorithnif a constantt exists such that it finds for each instance
I(5-r) a solution of value not more thantimes the optimal objective value plus
k for I(r), i.e.,

A(I(Br)) < a-OPTI(r)) +k . (2.0.2)

The definition for maximization problems and online probdeisianalogous.
In the online setting a bicriteriéx, 5)-competitive algorithm is typically called
a-competitive with resource augmentation by a factof of

Recently, a different relaxation to the definition of whaeanight understand
by an “efficient” algorithm has attracted considerablerdaita. There are cases
in which a (typically NP-complete) problem can be paranie¢erby a parameter
k such that for smalk there are efficient algorithms in the following sense.

Definition 2.2 (Fixed Parameter Tractable) An algorithm A is fixed parame-
ter tractable(FPT) with respect to parametdr if its running time is bounded
by f(k) - n®™) for an arbitrary functionf.

In a typical fixed-parameter tractable algorithfhis something like2* or 22",
Intuitively, for such an algorithm the exponential behawé the running time
has been reduced to the parameter.

For a more thorough coverage of approximation algorithies fer example
the books by Ausiello et al. [11]. For more information on thehniques used
to construct approximation algorithms, see the book byreaz{128] or the one
edited by Hochbaum [73]. The books by Papadimitriou [L00}Magener [130]
give a broader overview over complexity theory. For texttmon online algo-
rithms, see the books by Borodin and El-Yaniv [18], Fiat andeginger [59]

11

or the lecture notes by Albers [7]. Bicriteria approximatialgorithms were
originally introduced for scheduling problems [76, 101&tér, the analogous re-
source augmentation was presented as an online analylsisgae by Kalyana-
sundaram and Pruhs in [77]. See the books by Niedermeierd©8jowney
and Fellows [47] for a thorough introduction to the concefptixed parameter
tractability.

12

Chapter 2. Preliminaries

Chapter 3

Sequential Vector Packing

Tyrell: [explains to Roy why he can’t extend his lifespan]

“The facts of life...

to make an alteration in the evolvement of an organic liféesyss fatal.
A coding sequence cannot be revised once it's been estadblish
(from Blade Runner)

3.1 Introduction

Needless to say, many variations of bin packing have afidezcthuge amount of
scientific interest over the past decades, partly due to thkvance in diverse
scheduling applications. The variation which we inveggga this chapter arises
from a specificresource constrained schedulipgoblem: A sequence of jobs
is given and must be processed in this order. Each job neetisncamounts
of various types of resources (for instance 1 unit of reseudtc?2 units of re-
source B, 0 units of all others). Several jobs can be prodessene batch if the
resources they consume altogether are bounded by a pretiboad. Specif-
ically, for each individual type of resource we have a resgrgontaining some
amount of the resource and none of these amounts may be exicéedng one
batch. Within a given bound on the total amount of availabkources one has
the freedom to choose how these individual amounts arelligéd once and
for all (e.g., 10 units in the reservoir of resource A, 23 siitit the reservoir of
resource B, ...). The aim is to tune these amounts in such ahedyhe jobs
are processed in as few batches as possible. To motivatectigrio we now
describe a specific scheduling problem which is a variatfasetting presented
by Muller-Hannemann and Weihe [95]. The setting in [95]s#ras a subproblem

13

14 Chapter 3. Sequential Vector Packing

in a cooperation with Philips/Assembléon B.V., Eindhoviie Netherlands.

The task is to optimize an assembly line that consists of &e@r belt on
which different work pieces arrive in the work area, and oeadaf robot arms
that can process these work pieces. The robot arms can ipedifierent tasks
depending on the resources (for example tools) they load@ip phase before
each step from a resource reservoir (a toolbox). Therel aifferent such re-
sources. The work pieces require different processing robot arms equipped
with a specific amount of each resource. The sequé&niewhich the work
pieces arrive on the assembly line is fixed and cannot besdltércan be thought
of as a stack. This is the crucial difference compared tadstachbin packing or
scheduling scenarios, where it is assumed that reorderipgssible.

The resource reservoir has a total sizefbfind contains an amounj of
each resourcg, j € {1,...,d}, such thaE?:1 b; = B. Each production cycle
consists of a setup phase in which the robots load the negessaurces, so that
in a second phase as many work pieces as possible can be mowélde work
area (i.e., “popped from the stack”) and processed. For@f s&irk pieces to be
processed all the necessary resources must have been Indbdedetup phase.
The optimization task is to choose the valdesj € {1,...,d} once and for
all such that the total number of cycles needed to processtioée sequence is
minimized. This is not an on-line problem, since the seqaesfovork pieces
arriving on the conveyor belt is known in the beginning.

3.1.1 Model and Notation

We now give a formal definition of the problem. The jobs or wpi&ces corre-
spond to a sequence of vectors, i.e., the demand for respigspecified in the
ith component of such a vector. Similarly, the available veses correspond to
a bin vector, respectively. To the best of our knowledgegktting is novel. Due
to its basic character we believe that it may be of interessi & contexts other
than resource constrained scheduling. In some sense thieprean be seen as
inverse vector packing: Instead of reordering a sequerca fiiven bin vector,
the sequence is fixed and the bin vector needs to be chosen.

Definition 3.1 (Sequential vector packing)
Given: a sequenc® = s; - - -s,, of demand vectors; = (si1,...,8id) € Qi,
d € N, and atotal bin sizeB € Q.

Goal: a bin vector(or short: bin) b = (by,...,b4) € Qi with ijl b =B
such thats; - - -s,, can be packed in this order into a minimum number of such
binsb. More precisely, the sequence can be packed inlans, if breakpoints

3.1. Introduction 15

0=m < m <---<m = n exist, such that

T4+1
> si<b forlef0,... . k—1},

1=m+1

where inequalities over vectors are component-wise. Wetdehej-th compo-
nent,j € {1,...,d}, of the demand vectors and the bin vectoresourcgj, i.e.,
s;; is the demand for resourceof thei-th demand vector. We also referdpas
positions.

The sequential unit vector packingroblem is the restricted variant where
si, © € {1,...,n}, contains exactly one entry equal tp all others are zero,
i.e., each work piece needs only one tool. Note that anyisaltior this version
can be transformed in such a way that the bin vector is inktdiggab € N?, by
potentially rounding down resource amounts to the closgsger (therefore one
may also restrict the total bin size # € N). The same holds if all vectors in
the sequence are integral, i®..c N, i € {1,...,n}. Following Definition 2.1
we call an algorithmA a bicriteria («, 5)-approximation algorithnfor the se-
quential vector packing problem if it finds for each instaf8es - B) a solution
which needs no more tham times the number of bins of an optimal solution
for (S, B). Thatis, the approximation algorithm may not only approaienthe
value of the objective function within a factor af but it may also relax the total
bin size by a factor ofs.

3.1.2 Related Work

There is an enormous wealth of publications both on the icialskin packing
problem and on variants of it. The two surveys by Coffman,egand John-
son [32, 33] give many pointers to the relevant literaturél w®97. In [36]
Coppersmith and Raghavan introduce the multidimensiaralife) bin pack-
ing problem. There are also some variants that take intdderation precedence
relations on the items [134, 129] that remotely resemblesetting. Still, we are
unaware of any publication that deals with the sequentigtbreracking problem.

The setting presented in [95] is similar to ours. Differemirkvpieces arrive
in an unalterable sequence on an assembly line and are pealcey several ro-
bot arms. The principal goal is the same: to process all wa&gs as quickly
as possible. Moving the work pieces forward on the assennidydosts a fixed
amount of time; this corresponds to the time needed for thgpgghase. In con-
trast to our setting the processing times for each step cantivaugh, depend-
ing on which work piece can be accessed by which robot arm ffécte each

16 Chapter 3. Sequential Vector Packing

work piece has a certain number of tasks that need to be dospduyfic robot

arms. Another difference to our setting is that the robotsadm not have lim-

ited resources. Miuller-Hannemann and Weihe [95] give arhBifeiness proof
for their setting, present several results pertaining tedfigarameter tractability,
and derive a polynomial time approximation scheme. For aesuof general

problems and approaches to the balancing and sequencisgerhaly lines see
Scholl [113]. Ayob et al. [12] compare different models asdembly machine
technologies for surface mount placement machines.

3.1.3 Summary of Results

In Section 3.2 we present approximation algorithms for tbguential vector
packing problem. These are motivated by the strong NP-lessiresults that we
give in Section 3.3. The approximation algorithms are basean LP relaxation
and two different rounding schemes, yielding a bicritéfia—)-approximation
and—as the main result of this chapter{3a2)-approximation. Recall that the
former algorithm, e.g., for = % yields solutions with at mosttimes the opti-
mal number of bins while using at mokb times the given total bin siz8, the
latter may use at most the optimal number of bins and at masetthe given
total bin sizeB. In Section 3.4.1 we present two simple greedy strategids an
argue why they perform badly in the worst case. Furthermeeegive an easy
to implement heuristic and present two optimizations comog subroutines. In
particular, we show how one can “evaluate” a given bin veetficg., compute the
numberk of bins needed with this bin vector—in tind& % - d) after a preprocess-
ing phase which take®(n) time. Finally, in Section 3.5 we briefly discuss the
results of experiments with the heuristics and an ILP foatiah on real world
data.

3.2 Approximation Algorithms

In this section we present approximation algorithms for $bquential vector
packing problem. These are motivated by the strong NP-lessdresults that
we give in Section 3.3.1. We start by presenting an ILP-fdation, which we

subsequently relax to an LP. For ease of exposition we coatiy first describ-
ing a simple rounding scheme which yields a bicritéfa——)-approximation

and then show how to modify it in order to obtair(B 2)-approximation. For
e < 1/2 the first rounding scheme yields solutions that violate thergbin size

by less than a factor of two.

3.2. Approximation Algorithms 17

3.2.1 ILP Formulation

v

For a sequential vector packing instan& B), let w,, := Zizuﬂ s;, for
u,v € {0,...,n} andu < v, denote theéotal demandor total demand vectQr
of the subsequenc®, , := sy41---s,. If w,, < b holds, we can pack the
subsequencs,, ,, into bin b. The following integer linear programming (ILP)
formulation solves the sequential vector packing probleet. X := {z; | i €
{0,...,n}}andY := {yu. | u,v € {0,...,n},u < v} be two sets ob-1
variables, leb € Q4.

n
ILP: minimize Z T

i=1

s.t.) =1 (321)
i—1 n
Zyuz = Z Yio = x; forie{l,...,n—1} (3.2.2)
u=0 v=i+1

Wuo Yup < b forie{l,...,n} (3.2.3)

u,v:

u<i<v

d
> b, = B (3.2.4)
j=1
b e inxivyu,v S {07 1} for Ti € X7 Yu,v ey

The0-1 variablex; indicates whether there is a breakpoint at posifion1.
Hence the objective: to minimize the sum overall The 0-1 variabley,, ,
can be seen as a flow which is routed on an (imagined) edge fasiign
u € {0,...,n — 1} to positionv € {1,...,n}, with u < v, see Figure 3.2.1.
The Constraints (3.2.2) ensure that flow conservation hioldthe flow repre-
sented by they, , variables and that; is equal to the inflow (outflow) which
enters (leaves) position Constraint (3.2.1) enforces that only one unit of flow
is sent via theY” variables. The path which is taken by this unit of flow di-
rectly corresponds to a series of breakpoints. For instaheee have consec-
utive breakpoints at positions and v, there will be a flow ofl from u to v,
€., Ty = Yy =Ty = L.

In Constraints (3.2.3) the bin vectbrcomes into play: for any two consecu-
tive breakpoints (e.gx,, = =, = 1) the constraint ensures that the bin vector is
large enough for the total demand between the breakpoigtsifee total demand
w,,, Of the subsequenc®, ,). Note that Constraints (3.2.3) sum over all edges
that span over a positior(in a sense the cut defined by positidnenforcing that

18 Chapter 3. Sequential Vector Packing

y-vars Y3=1 ys7=1yrs=1
y1,2 = O etc. ys 10=1
sequence 0
position ¢ 01 2 ;:; L 5 6 7 ;x 9 10
var ; 10010001101
breakpoints =0 m; =3 m =7 me=10
3 = 8

Figure 3.2.1: An exemplary sequential vector packing instance togetfitbrav
potential ILP solution, and a flow representation of the siolu. The objective
value is 4.

the total resource usage is boundedbyror the two consecutive breakpoints
andz, this amounts tow,, , - y,, < b. Finally, Constraint (3.2.4) ensures the
correct total size of the bin vector.

3.2.2 Aneasy(l, -1-)-Approximation

As a first step we relax the ILP formulation to an LP: here th&ams to have
Tiy Yu,w € [0,1] fOr z; € X, Yy e Y. We claim that the following Algorithm
EPSROUNDING computes 42, -1)-approximation:

’1—e
1. Solve the LP optimally. LetX™*, Y™*, b*) be the obtained fractional solu-
tion.

2. Set(X,Y,b) = (X*,v* b*) andis = 0. Stepwise roundX, Y):

’ 1 e’
3. Letie > is be the first position for WthEl i1 Ti > €.

4. Setz; = 0fori € {is+1,...,ie — 1}, seti;, = 1. Reroute the flow
accordingly (see also Figure 3.2.2):

(@) Setyigi, = 1.
(b) Increasey;, ; byZ ,_l Yir i, TOr i > de.
(c) Sety,, iy =0andg,; =0,fori’ € {is+1,...,5e—1},i> 7.

5. Set the news to i and continue in Line 3, untik = n.

Theorem 3.2 The algorithmEPS ROUNDING is a (1, :2-)-approximation al-
gorithm for the sequential vector packing problem.

Proof. We show the desired result in three separate steps.

3.2. Approximation Algorithms 19

».x x -

T, = 1 Ty =0
‘Tl’ =0 ‘/L.’LL =1

Figure 3.2.2: An example of the rerouting of flow in Lines 4 (a)-(c) of theoalg
rithm.

Integer Rounding. The following invariant is easy to see by considering Fig-
ure 3.2.2: at the beginning of each iteration step (i.e.,ia€[3) the current,
partially rounded solutioiX, Y, b) corresponds to a valid flow, which is inte-
gral until positionis. From this invariant it follows thatX, Y, b) in the end
corresponds to a valid integer flow.

At Most i-times the Number of Breakpoints. In Line 4, &; values which
sum up to at least (see Line 3) are replaced By, = 1. Therefore, the rounding
increases the total value of the objective function by attradactor of%.

At Most llj-times the Total Bin Size. Again consider one step of the itera-
tion. We need to check that by rerouting the flow to go direfrtyn is to ie we
do not exceed the LP bin capacity by more thé@ - b*. We show the stronger
invariant that in each step after rerouting, the currentjgdéy rounded solution
fulfills Constraint (3.2.3) untile w.r.t. b and fromie+1 to the end of the sequence
w.r.t. b*. First let us consider the increasejgf;, for i > ie, in Line 4 (b). Since
the total increase is given directly by some; which are set td® (Line 4 (c)),
the Constraint (3.2.3) still holds after the change whr't. In other words, flow
on edges is rerouted here onto shorter (completely comtpdges; this does
not change the feasibility of Constraint (3.2.3).

Now we consider the increase @f ;, to 1. We will show that the total de-
mandwls i between the new breakpointsandie is bounded byf: - b*. With

= 1 and since> =, 1% < e (see Line 3), we know that ", Ji,i =

Biy — S B > 1= YL @ > 1 — e note that the first equality

holds by the flow conservation constraint (3.2.2). By Caaistr(3.2.3) we ob-
QAN Wi i i, Yisi < Doimiy Wissi Visii S Doy yruciocn Wuo Jup < ¥, Where
the last inequality follows by the invariant for the laststd hus, plugglng these
two inequalities together, we know for the total demangd;, < —— - b* = b.
Since this holds for all iteration steps and thus for all emugive breakpomts of

20 Chapter 3. Sequential Vector Packing

the final solution, it is clear that multiplying the bin vectuf the LP solution by
a factor— yields a valid solution for the ILP. O

Note that one would not actually implement the algorithASIROUNDING.
Instead, it suffices to compute the bin veckdrwith the LP and then multiply
it by 1T15 and evaluate the obtained bin vector, e.g., with the algarigiven in
Section 3.4.4.

3.2.3 A(1,2)-Approximation

We start by proving some properties of the LP relaxation &ed tlescribe how
they can be applied to obtain the rounding scheme yieldiagl#sired bicriteria
ratio.

Properties of the Relaxation

Let (X,Y,b) be a fractional LP solution; recall that thé variables represent

a flow. Lete; = (u,v) andes = (u/,v") denote two flow carrying edges,
i.e., Yy > 0andy, , > 0. We say that; is contained ines if v < u
andv’ > v, we also call(e;, e3) an embracing pair We say an embracing
pair (e1, e2) is smallerthan an embracing paié;, é2), if the length ofe; (for

e1 = (u,v), its length isv — u) is less than the length éf and in case of equal
lengths, ifu < @ (order by left endpoint). That is, for two embracing pairshwi
distincte; andé; we always have that one is smaller than the other. We show
that the following structural property holds:

Lemma 3.3 (no embracing pairs)Any optimal fractional LP solution
(X*,Y*,b*) can be modified in such a way that it contains no embracing
pairs without increasing the objective function and withawdifying the bin
vector.

Proof. We set” = Y* and show how to stepwise treat embracing pairs contained
in Y, proving after each step th&kX*, Y, b*) is still a feasible LP solution. We
furthermore show that this procedure terminates and in titer® embracing
pairs are left inY".

Let us begin by describing one iteration step, assumiXig, Y, b*) to be a
feasible LP solution which still contains embracing palirst (e;, e2), withe; =
(u,v) andey = (u/,v"), be an embracing pair. We now modify the fldito
obtain a new flowt” by reroutingh = min{y, ,, ¥, } Units of flow frome, e,
ontothe edges; = (u,v’) andey = (u',v): y;, ,, = Yu,o — A, y;,yv, = Yy — A

3.2. Approximation Algorithms 21

| | | |
a b\r'u c ,d | e

) T i~ €l * T e
| | | |
e 1 eg | L
*l T T I‘e e
| | | |
L€ v’
T 7~ T 3 o
| | | |
woey w !
i~ T * T o

Figure 3.2.3: Replacement of units of flow ore; ande; by A units of flow ore)
ande), in Lemma 3.3.

andy,, , = Yu' vt Yy, v = Yu,or+A; S€€ also Figure 3.2.3. The remaining flow
values inY” are taken directly fronY". It is easy to see that the flow conservation
constraints (3.2.2) still hold for the valugg*, Y’ (consider a circular flow ok
units sent in the residual network ®fon the cyclex’, v, u,v’,v'). SinceX* is
unchanged this also implies that the objective functiomealid not change, as
desired. It remains to prove that the Constraints (3.2iBhstid for the values
Y’ b* and to detail how to consecutively choose embracing pairg-) in such

a way that the iteration terminates.

Feasibility of the Modified Solution. Constraints (3.2.3) are parameterized
overi € {1,...,n}. We argue that they are not violated separatelyifat
{w +1,...,u},i € {fu+1,...,v},andi € {v+1,...,v'}, i.e., the regions
b, ¢, andd in Figure 3.2.3. For the remaining regiomsnde it is easy to check
that the values of the affected variables do not change wéygagingy” by Y.

So let us consider the three regions:

Regionb (d) The only variables in (3.2.3) which change when repladihg
by Y for this region arely,, ,, = yu v — A andy,, , = yuw .o + A. This
means that flow is moved to a shorter edge, which can onlyaserthe slack of
the constraints: Wittw, , < w,/ . it is easy to see that (3.2.3) still holds in
regiond. Regiond is analogous to.

Regionc Here the only variables which change in (3.2.3) afg; = yu.. — A,
Yo =Yt — N Yy = Yurw + A ANy, = Yy + A In other words\
units of flow were moved from; to ¢/, and frome, to e}. Let us consider the
fraction of demand which is contributed to (3.2.3) by thes#suof flow before

22 Chapter 3. Sequential Vector Packing

and after the modification. Before (ef andez) this wash - (W, + Wy o)
and afterwards (or] andeb) itis A - (w, , + W,/). Since both quantities are
equal, the left hand side of (3.2.3) remains unchanged iomeg

Choice of (e1, e2) and Termination of the Iteration. In each step of the iter-
ation we always choose the smallest embracing (eaire2), as defined above.
If there are several smallest embracing pairs (which by digfimall contain the
same edge;), we choose one of these arbitrarily.

First we show that the modification does not introduce an egibg pair that
is smaller thar(e, e2). We assume the contrary and say w.l.o.g. that the flow
added to edge] creates a new embracing péir, ¢}) that is smaller than the
(removed) embracing pafe;, e2). Clearly,e is also contained in,. Therefore,
before the modificatiofe, e2) would have been an embracing pair as well. Since
(e, e2) is smaller tharjey, e5) it would have been chosen instead, which gives the
contradiction.

It follows that we can divide the iterations into a boundeder of phases:
in each phase all considered embracing pairs are with regpée same; -type
edge. As soon as a phase is finished (i.e., no embracing pidirsh& phase’s
e1-type edge remain) this, -type edge will never be considered again, since this
could only happen by introducing a smaller embracing paérle the iteration.
Thus, there are at moét(n?) phases.

Now we consider a single phase during which an edgés contained in
possibly several other edges. By the construction of the modification for
an embracing paifeq, e2) it is clear thates could not be chosen twice in the
same phase. Therefore, the number of modification stepshasepcan also be
bounded byO(n?). O

Choose a Flow Carrying Path

We will use the structural insights of the last section toserthat bin vecto®-b*
yields a(1, 2)-approximation to the optimal solution.

Due to Lemma 3.3 an optimal fractional LP solutioX*, Y™*, b*) with-
out embracing pairs exists. Let,;, denote the shortest flow carrying path in
(X*,Y*, b*), where shortest is meant with respect to the number of breate
Clearly, the length of...;, is at most the objective function valy€;._, x}, since
the latter can be seen as a linear combination of the patitherd an arbitrary
path decomposition. Below we show that the integral satutiorresponding

3.2. Approximation Algorithms 23

is e
S - [LIITITTHITHITTIIT]---
| |
| |
Pmin. L€ g
|

Figure 3.2.4: Extracting the integral solution. Edgetogether with other poten-
tial edges inY* in Theorem 3.4.

to pmin is feasible for the bin vect@- b*, and thu,,,;, and2-b* are our(1, 2)-
approximation. Observe that the approximation algoritlo@shot actually need
to transform an optimal LP solution, given, e.g., by an LR/eglinto a solution
without embracing pairs. The existence of path, in such a transformed solu-
tion is merely taken as a proof that the bin vecteb* yields less thai} ", =}
breakpoints. To obtain such a path, we simply eval@ate* with the algorithm
presented in Section 3.4.B81 given by the LP solver).

Theorem 3.4 Given an optimal fractional LP solutiofiX*, Y™*, b*) without em-
bracing pairs, letp,,;,, denote the shortest flow carrying path. The integral solu-
tion corresponding te,,;,, is feasible for2 - b*.

Proof. We only have to argue for the feasibility of the solution tvthe dou-
bled bin vector. Again we will consider Constraints (3.2.8jigure 3.2.4 de-
picts an edge: on pathp,,;, and other flow carrying edges. We consider the
start and end positions and i in the subsequence defined by Denote by
Ei, = {(u,v) | 0 < u < is < v < n} (and E,,, respectively) the set of all
flow carrying edges that cross (ic) and byimin, (imax) the earliest tail (latest
head) of an arc irE;_, (E;,). Furthermore, lef’ = E; U E;,. Summing up
the two Constraints (3.2.3) fag andie gives2b* > Z(u,v)eEis Ynw Wuo +
Z(uﬂ))eEie Yr v Wuw = Aandthus

2b*>A > > > Ypo-si (3.2.5)
imin <i<imax (u,0)EE’:
u<i<v
*
> E E Yuw " Si = E Si = Wigi, - (3.2.6)
1s<i<ie (u,v)EE’: 1s<i<ie
u<i<v

The second inequality in (3.2.5) is in general an inequélégause the sefs;
and £;, need not be disjoint. For the first equality in (3.2.6) we refythe fact

24 Chapter 3. Sequential Vector Packing

that there are no embracing pairs. For this reason, eactiqrosetweens andie
is covered by an edge that covers eithar i.. We have shown that the demand
between any two breakpoints pny;,, can be satisfied by the bin vectorb*. [

Observe that for integral resources the above proof impiaseven| 2b* |
has no more breakpoints than the optimal solution. Note #ilabit is easy
to adapt both approximation algorithms so that they can leapie-specified
breakpoints. The correspondimgvalues can simply be set to one in the ILP and
LP formulations.

3.3 Complexity Considerations

In this section, we study the computational complexity & sequential vector
packing problem. First, we show that finding an optimal doluis NP-hard,
and then we consider special cases of the problem that alfwelyaomial time
algorithm or that are fixed parameter tractable (FPT). OusidRIness proofs
also identify parameters that cannot lead to an FPT-alyarit

3.3.1 Minimizing the Number of Breakpoints (Bins)

For all considered problem variants it is easy to deterntireedbjective value
once a bin vector is chosen. Hence, for all variants of thaeeeiipl vector pack-
ing problem considered in this chapter, the correspondaagstbn problem is in
NP.

To simplify the exposition we first consider a variant of tlegsential unit
vector packing problem where the sequence of vectors hapgciied break-
points, always aftew positions. Then the sequence effectively decomposes into
a set of windows of length, and for each position in such a windawt is suf-
ficient to specify the resource that is used at posijion {1,...,w}, denoted
ass’ € {1,...,d}. This situation can be understood as a set of sequential unit
vector packing problems that have to be solved with the samedotor. The ob-
jective is to minimize the total number of (additional) bkpaints, i.e., the sum
of the objective functions of the individual problems. Lratge also show strong
NP-hardness for the original problem.

Lemma 3.5 Finding the optimal solution for sequential unit vector ging with
windows of length 4 (dimensiehand bin sizeB as part of the input) is NP-hard.

Proof. By reduction from the NP-complete problem Clique [62] or mmgener-
ally from k-densest subgraph [56]. Lét = (V, E)) be an instance df-densest

3.3. Complexity Considerations 25

subgraph, i.e., an undirected graph without isolated nadeghich we search
for a subset of nodes of cardinalitythat induces a subgraph with the maximal
number of edges.

We construct a sequential unit vector packing instai$ce3) with windows
of length 4 and withd = |V| resources. Assume as a haming conventios
{1,..,d}. There is precisely one window per edge- (u,v) € E, the sequence
of this window iss® = wwvuwv. The total bin size is set t&8® = d + k. This
transformation can be carried out in polynomial time andieas, as shown
in the following, that(S, B) can be solved with at mosE| — ¢ (additional)
breakpoints if and only iz has a subgraph with nodes containing at least
edges.

Because every window contains at most two vectors of the sasmurce,
having more than two units of one resource does not influemeetimber of
breakpoints. Every resource has to be assigned at leastnineecause there
are no isolated nodes ifi. Hence, a solution t¢S, B) is characterized by the
subsetR of resources to which two units are assigned (instead of. dBgthe
choice of the total bin size we hay®| = k. A window does not induce a
breakpoint if and only if both its resources are) otherwise it induces one
breakpoint.

If G has a node induced subgra@hof sizek containing/ edges, we chosi
to contain the nodes @’. Then, every window corresponding to an edg&:6f
has no breakpoint, whereas all other windows have one. Hémeaumber of
(additional) breakpoints igZ| — £.

If (S, B) can be scheduled with at md#| — ¢ breakpoints, defin® as the
resources for which there is more than one unit in the binorettow |R| < &,
and we can assun&| = k since the number of breakpoints only decreases if
we change some resource from one to two, or decrease the nofimesources
to two. The setR defines a subgrap@’ with & nodes ofG. The number of
edges is at leagtbecause only windows with both resourcedimo not have a
breakpoint. O

It remains to consider the original problem without pre&sfied breakpoints.

Lemma 3.6 Let (S, B) be an instance of sequential (unit) vector packing of
lengthn with & pre-specified breakpoints anbresources < B) where every
resource is used at least once.

Then one can construct in polynomial time an instaf¢'e B’) of the (unit)
vector packing problem with bin siZ¢ = 3B+2andd’ = d+2B+2 resources
that can be solved with at moét- k& breakpoints if and only ifS, B) can be
solved with at most breakpoints.

26 Chapter 3. Sequential Vector Packing

Proof. The general idea is to use for every prespecified breakpomées'stop-
ping” sequencé’; with the additional resources in a way that the bo@idjuar-
antees that there is precisely one breakpoink;n This sequencé’; needs to
enforce exactly one breakpoint, no matter whether or noethas a breakpoint
within the previous window (i.e., betwedn_; and F;). If we used same se-
quence forF;_, and F;, a breakpoint within the window would yield a “fresh”
bin vector forF;. Therefore, the number of breakpointsihcould vary depend-
ing on the demands in the window (and whether or not they iadueakpoint).

To avoid this, we introduce two different stopping sequaericandG which
we use alternatingly. This way we are sure that between twaroences of'
there is at least one breakpoint. The resouices., d of (S’, B’) are one-to-
one to the resources @8, B). The2B + 2 additional resources are divided into
two groupsfi, ..., fpy+1 for F andgs, ..., gpy1 for G. The first pre-specified
breakpoint inS, the third and every other odd breakpoint is replaced by ¢he s
quenceF := f1fo---fer1fife -+ fB+1, the second and all even breakpoints by
the sequencé&’ := g1g2- - -gp+19192- - *gB+1-

To see the backward direction of the statement in the lemnizin avec-
tor b for (S, B) resulting in¢ breakpoints can be augmented to a bin veblor
for (S, B) by adding one unit for each of the new resources. This doesxzot
ceed the bound’. Now, in (S’, B’) there will be the original breakpoints and
a breakpoint in the middle of each inserted sequence. Thigsthatb’ results
in ¢ 4+ k breakpoints fo(S’, B’), as claimed.

To consider the forward direction, I& be a solution tS’, B’). Because
every resource must be available at least once Birdd’ = 3B+2— (d+2B+
2) = B —d, at mostB — d < B entries ofb’ can be more than one. Therefore,
at least one of the resourcégsis available only once, and at least one of the
resourceg; is available only once. Hence, there must be at least on&boed
within each of thek inserted stopping sequences. ket ¢ be the number of
breakpoints induced bk’ andb the projection ofb’ to the original resources.
Since all resources must have at least one unit and by chbié® andd’ we
know thatb sums to less thar.

Now, if a subsequence &fnot containing any or g resources can be packed
with the resourced’, this subsequence can also be packed wittHence,b
does not induce more thdreakpoints in the instan¢&, B) with pre-specified
breakpoints. O

Theorem 3.7 The sequential unit vector packing problem is strongly Nifdh

Proof. By Lemma 3.5 and Lemma 3.6, with the additional observatiat &ll
used numbers are polynomial in the size of the original graph O

3.4. Practical Algorithms 27

3.3.2 Polynomially Solvable Cases and FPT

Here, we consider the influence of parameters on the contyplekihe prob-
lem, and ask whether fixed parameter tractable algorithmexist, see Defini-
tion 2.2.

If the windows in the vector packing problem are limited todéh three,
the problem can be solved in polynomial time: There is noratgon between
the resources, thus, it is impossible that avoiding a breakpnduced by one
resource depends upon the multiple availability of anoteeource. Hence, a
natural greedy algorithm that always takes the resourd¢etieently causes most
breakpoints is optimal. Additionally, Lemma 3.5 shows ttinet problem is NP-
hard even if all windows have length 4. Hence, the parameitattaw size does
not allow an FPT-algorithm if RXP.

On the other hand, for integr8land B, the parameteB allows (partly be-
caused < B) to enumerate (see Section 3.4.3) and evaluate (Sectiof) 3%
number of breakpoints in timg(B) - n°("), i.e., this is an FPT-algorithm.

A constant upper limit on the number of breakpoints allowsriamerate all
positions of breakpoints and to determine the necessamyegitor in polynomial
time. Note that this is not an FPT algorithm.

3.4 Practical Algorithms

In this section we consider different practical algorithfos sequential vector
packing together with some algorithmic questions aboutethemeration and
evaluation of solutions that arise in the context of the sddteuristic presented
here.

3.4.1 Greedy Algorithms

In this section we analyze two natural greedy heuristicse@®an input(S, B)

we denote byk(b) the minimal number of breakpoints needed for a fixed bin
vectorb. Observe that it is relatively easy to calculai@) in linear time. We
will discuss this in more detail in Section 3.4.4. The twoeghg algorithms we
discuss here are REEDY-GROW which grows the bin vector greedily starting
with the all one vector and REEDY-SHRINK which shrinks the bin vector start-
ing with a bin vectob with £(b) = 0 that initially ignores the bin siz&.

Also in the light of the following observations it is importato specify the
tie-breaking rule for the case that there is no improvemeait after the addition

28

Chapter 3. Sequential Vector Packing

Algorithm 1: Algorithm GREEDY-GROW

input : an instancésS, B) of the sequential vector packing problem
output: bin vectorb

b+«—1,; Boyr+—d

while Beyr < B do
/[add the resource by which the most breakpoints are saved
Tgreedy —— argmin o, <4k (b1, ..., br +1,..., ba)
b N bT'greedy+ 1; Beur «— Beur+1

end

return b

T'greedy

Algorithm 2 : Algorithm GREEDY-SHRINK

input : an instancé€S, B) of the sequential vector packing problem
output: bin vectorb

/I start with minimal bin vector that incurs no breakpoints
b« Z;L:l Si; Beur +— 221:1 b;
while Beyr > B do
/I remove the resource by which the smallest increase irkpo#ats is

incurred
T'greedy <— argm”’lgrgdk(b17 ey brr —]., ey bd)
brg,eedy — brg,eedy —1; Beur «— Beur—1
end

return b

3.4. Practical Algorithms 29

of a resource. We show next thaRGEDY-GROW can be forced to produce a
solution only by this tie breaking rule, which is an indicator its bad perfor-
mance:

Observation 3.8 Given any instancéS, B), this instance can be modified to an
instance(S’, B’), withn’ = n,d" = 2d, B’ = 2B such that all of GREEDY-
GROW's choices of which resource to add depend entirely on théreaking
rule.

The idea is to split each resourgeénto two resources;, r, and to replace
each occurrence of in a demand vectos by a demand for; andr,. We
call this transformatiomloublingand will come back to it in the experimental
section. Then, consideringrREEDY-GROW's approach to reduce the number of
breakpoints, increasing or r» alone is not enough. Only if; andr, are both
increased, the number of breakpoints may decrease. Tlat &l resources the
number of saved breakpoints in the beginning is zero, anedyres forced to
take an arbitrary resource in Step 1 and then the partneisofg¢lource in Step
2. Then QREEDY-GROW again chooses an arbitrary resource in Step 3 and its
partner in Step 4, and so on. With this scheme it is obvious®@raEEDY-GROW
can be fooled to produce arbitrary solutions.

It follows that GREEDY-GROW with an unspecified tie-breaking rule can be
led to produce arbitrarily bad solutions. AISORGEDY-SHRINK can produce
bad solutions depending on the tie breaking scheme as tbe/fiofy observation
shows.

Observation 3.9 There are instances withresources on which the solution pro-
duced byGREEDY-SHRINK is a factor of|d/2| worse than the optimal solution,
if the tie breaking-rule can be chosen by the adversary.

Letk = |d/2], consider the following unit vector instance with resources
andB = 3k:

Lok 1o k(k 4+ 1) (k + 1) (k +2)(k +2) - - (2Kk)(2k) .

At the beginning of the algorithrb is set to(2,. .., 2). In the first step the
removal of each of the resources incurs one breakpoint. eftwer, GREEDY-
SHRINK deletes an arbitrary resource depending on the tie-brgakimeme. We
let this resource be one of the lasbnes. After this deletion the situation remains
unchanged except for the fact that the chosen resource izt mlecreased any
more. It follows that ink steps REEDY-SHRINK sets the last resources to
one, which incurs a total cost @f, whereas the optimal solution sets the first

30 Chapter 3. Sequential Vector Packing

k resources to one, which incurs a costlof Thus, the ratio of greedy versus
optimal solution igk = |d/2].

For the experiments (see Section 3.5) we use for both hiegriasround-
robin tie breaking rule that cycles through the resources. Every & tie occurs
it chooses the cyclic successor of the resource that wasased (decreased) in
the last tie.

3.4.2 Enumeration Heuristic

In this section we present an enumeration heuristic fogiiaedemand vectors
s; € N4, i € {1,...,n}, thatis inspired by a variant of Schoning’s 3-SAT al-
gorithm [114] that searches the complete hamming ballsaitisd /4| around
randomly chosen assignments, see [42].

The following algorithm uses a similar combination of ramiped guessing
and complete enumerations of parts of the solution spa¢@atbhaxponentially
smaller than the whole solution space. The idea is to guafsronty at random
(u.a.r.) subsequencés, ;, of the sequence that do not incur a breakpoint in a
fixed optimal solutiorb,,;. For such a subsequence we know thgf, > w;, ;,.

In particular, if we know a whole séf” of such total demand vectors that all
come from subsequences without breakpointshigy;, we know thatbg,; >
maxwcw W must hold for a component-wise maximum. This idea leadséo th
RANDOMIZED HEURISTIC ENUMERATION (RHE) algorithm, see Algorithm 3.
The parameter subsequence length can be set to meaninigfes via(estimates
of) the minimal number of breakpoints are available. Thifeing lemma states
the resulting success probability of the algorithm:

Lemma 3.10 Let boy be an optimal bin vector for an integral instan¢8, B)
and choose ssl a5+ | + 1, wherek is the minimal number of breakpoints.
Then for each of the demand vectovs ,,i € {1,...,p} in AlgorithmRHE

it holds thatPr[w, 7, < boy > 5 -

Proof. A sufficient (but not necessary) condition far, 7, < bopt is that the
optimal solutionbep: has no breakpoint in the subsequeﬁ]@g,gi. There are
n — ssl+ 1 many intervals that are chosen uniformly at random. Eacakpeint
can hit only ssk 1 of them. Thereforep — ssl+ 1 — k(ssl— 1) is a lower bound
on the number of intervals without breakpoints. This bouth@sprobability of
choosing an interval that contains no breakpoint in itsrintefrom below by
nossitl_tesbl) By equating this witht we get the above choice for ssl without
the flooring. By rounding down to the next integer the sucpegbability cannot
decrease. O

3.4. Practical Algorithms 31

Algorithm 3: RANDOMIZED HEURISTIC ENUMERATION (RHE)

input : an instancésS, B) of the sequential vector packing problem, the
subsequence length ssl and a numbef repetitions
output: a feasible solutioi

1t+«—0

2 forie{l...p}do

3 g; “—uar{0,...,n—ssl};7; «— g, + ssl
4 t «+— max {t,wgi@}

5 end

6 Minstops—— oo

7 forall b {b' | b’ > ¢,5°7_, b} = B } do
stops«—— eval uat e(b)
if stops< minstopghen minstops—— stops b,y «— b

10 end
11 return byue

As the value ofk is not known a priori we use (over-)estimates in the ex-
periments, which we adapt in the course of the algorithm asrd®ed in Sec-
tion 3.5. Note that an overestimate/ofeads in general to a success probability
greater than} but to a smaller subsequence length than in the lemma. The firs
subsequence that is guessed increases the lower bound bgdte full length.
Subsequent guesses can, but need not, improve the lowetd$oLime growth of
the lower bound depends on the distribution of demand veatdhe fixed input
sequence and is therefore difficult to analyze for arbitsargh sequences. On
the other hand, analyzing the growth of the lower bound sqessible for ran-
dom input sequences, but we doubt that this would give anynimgaul insights.
For this reason, we only give experimental evidence thaakperithm performs
well, see Section 3.5.

3.4.3 Enumeration

As easy as the enumeration in the second phase of our RHEthigdooks,
this should be done efficiently. So let us have a look at thélpro at hand:
We want to enumerate all possilllg . . ., b, with sum B and individual lower
and upper bound§(i), u(i) € {0,..., B} on the summandi) < b; < u(i),
i € {1,...,d}. For short, we also denote these bounds as vettwrdu. In the
literature on combinatorial generation algorithms sucmmations with upper
bounds only are known ggl)-compositions with restricted partsee [111] or

32 Chapter 3. Sequential Vector Packing

[99]. There is a bijection to combinations of a multiset. édimpositions with
restricted parts can be enumerated by a constant amoiitize @AT) algorithm,
which can be easily extended to the case with lower boundsowitchanging
the CAT behavior. We give the modified algorithry@mAaTIONS (B, d, U) that
enumerates the compositions with restricted parts in cadgxaphical order for
convenience and refer to [111] for its unchanged analydie tdtal number of
compositions with restricted parts for giveandu is the Whitney number of the
second kind of the finite chain produet(1) — ¢(1)+1) x- - -x (u(r) — £(r)+1),
wherez denotes a chain af elements, see again [111] for details.

Procedure SUMMATIONS(positionp, resourcer, boundn)

input : dimensiond, lower bound vectol, upper bound vectau,
sumB
output : SUMMATIONS(B — Y0, £(r),d + 1, X% u(r) — £(r))

evaluates alti-compositions with restricted parts for the
above parameters.

if p=0then
| evaluateb
else

for ¢ € {max(0,p —n +u(r) — £(r))...min(u(r) — £(r),p)} do
b — c+L(r)
SUMMATIONS(p — ¢, 7 — 1,n — u(r) + £(r))
end
by — £(r)
end

The initial call is IMMATIONS (B’,d+1,U’) for B’ = B — Zle ¢(r)and
U' = 3%_ u(r) — £(r). This algorithm has CAT behavior fd8’ < U’/2. For
B’ > U’/2there s a similar algorithm that can be adapted from algoritEN2
in [111]. We sum up the results of this section in the follogitheorem.

Theorem 3.11 Thed-compositions with restricted parts and lower bounds nec-
essary for algorithnrRHE can be enumerated in constant amortized time.

3.4.4 Evaluation

For the general problem with demand vecteysc Q4, i € {1,...,n}, the
evaluation of a given bin vectds can be done in the obvious way @(n - d)
time: Scan through the sequence starting at the last bregkpo(initially at

3.4. Practical Algorithms 33

mo = 0) updating the total demand vecter,, ; of the current bin until the
addition of the next vectas; ., in the sequence would make the demand vector
exceedb. Then add breakpoint,,; = 7 and continue the scan with the next bin
starting from there.

In the special case of sequential unit vector packing thémencan be im-
proved toO(n), since for each demand vector only one of éhresources needs
to be updated and checked.

For a single evaluation of a bin vector this algorithm is bally the best
one can hope for. On the other hand, in the setting of our szignumeration
algorithm where many bin vectors are evaluated, the questiises, whether
we can speed up the evaluations if we allow for preprocessig describe
an approach that we developed for our application, thatismproach for the
sequential unit vector packing problem with large values afompared taok,
the number of breakpoints. It is possible to extend parthefapproach to the
general problem with a loss in space efficiency.

A first simple approach builds am x d x B) tableT; as sketched in Fig-
ure 3.4.1. In this table we store in enffy(p, r,) the position of the next break-
point in the sequence starting from positipfor a bin vectorb with capacityd
for resourcer, i.e.,b,. = 4, andb, = oo for k # r. To evaluate a given bin vector
b we start at position and inspect positiondl, r, b,.) for 1 < r < d. The next
breakpoint must be at the minimum of these values. Thus, we ha

Tip1 = 12}2(1T1(771,T, br) . (3.4.1)

Equation 3.4.1 directly gives an(kd) algorithm for the evaluation of a bin vec-
tor. Herek denotes as usual the number of breakpoints. On instanchs wit
kd < n this is a speedup. The space complexity of this approachséem
be®©(n - d - B) at first glance. But notice that between two occurrences of a
resourcer in the sequence the value ®f(-, r, -) remains the same. More pre-
cisely, if for all p" with p; < p’ < ps it holds thats,, # r, then we have
T1(p1,7,90) = Ti(p2,r,d) for all 6. Let us call such an interval with equal en-
tries for a given resource a block An example can be found in Figure 3.4.1,
where the blocks are depicted as grey rectangles. The tatalber of blocks is
bounded byn + d = O(n) because at each position exactly one block ends in
the setting of unit vector packing. Also the answer vectarthe blocks need
not be stored explicitly: In the-th block of resource the table entry fob,. is
simply the position before the end position of black b, as indicated by the
exemplary arrows in the figure. Therefore, in our approaclstees the block
structure in an array of siz@(n) to get a constant lookup time for a given table
entryTi(p,r,0). More precisely, we storé arrays{ A, ..., A;} of total size

34

Chapter 3. Sequential Vector Packing

b ba b3 bq
134... 234... M234--- 1234
2 |l 571 .| |pe 12z 5 .00 14 ...]
3 e oo)]
5 m—
! LI]
A
‘ N . .
vYry
1
. —

Figure 3.4.1: Simple data structure that accelerates the evaluation dhavec-
tor. The first column shows an exemplary unit vector demaqdesee, i.e., the
rows correspond to positions 8. The exemplary entries in the table stand for
the position of the next breakpoint in the sequence staftorg the current row
for a bin vector with capacity for the resource of the current column and no
resource bound for the other resources. The solid arrowsvstie minima of
Equation 3.4.1 for the example bin vect@r 1,1, ..., 1). Breakpoints are high-
lighted in the sequence (leftmost column). The exempldtgdiarrows indicate
the end positions of the blocks, before which the relevagehpoints are located.

3.5. Experiments 35

O(n), such thaf 4,.(¢)} gives the end position of blockof resource or equiv-
alently the position of thé-th occurrence of in S. Itis easy to see that the block
structure can be (pre-)computed in linear time.

However, with this approach a different problem ariseseAthe computa-
tion of breakpointr;; 1, we need to know at which positions we should access
each of the arrays next. To answer this question we introdusecond table.
Let 75 be an(n x 2)-table that stores ifi’(p, 1) the index of the (unique) new
block! that starts at positiop and inTx(p, 2) the index of the current block of
resourcgp mod d) + 1 inarray A, moa 4)+1- In order to recompute the indices
for breakpointr; ; we read thel rows{Ts(m;+1 —d+1,-),...,Ta(mi+1,)}
Each resource occurs once in the second column of the read rows and might
occur several times in the first column. Take as index forus=or- the value
of the last occurrence of in the read rows, regardless of the column, i.e., the
occurrence with the highest row index. This approach ctdgr@omputes all
new indices in the arrayg;, ..., A4} in O(d) time, which is also the time that
a single step takes without this index computation. Obwiguable 75 needs
O(n) space. Alternatively, this tabl&, can be understood as a persistent ver-
sion of the list containing for every resource its next ocence, that is updated
during a scan along the sequence. In this situation a gemethlod for partially
persistent data structures like [48] can be applied andlyitle same time and
space bounds. Altogether, we have shown the following greor

Theorem 3.12 Given a sequenc® we can construct a data structure with(n -

d - B) space and preprocessing time such that an evaluation qoesefjuential
vector packing for a bin vectds takesO(kd) time, where: denotes the number
of breakpoints fob. For sequentialnit vector packing onlyO(n) space and
preprocessing time is needed.

Note that for RHE if we have already found a bin vector wittmany break-
points we can stop all subsequent evaluations already/dftermany steps.

3.5 Experiments

In this section we report on some experiments on real wortd.dd@he data
are electronically available atmwv. i nf . et hz. ch/ per sonal / munkess/
SVP/ . All instances are sequential unit vector packing instance

1Strictly speaking, the first column in tablg is not necessary as it simply reproduces the se-
guence. Here it clarifies the presentation and the conmetdgithe technique in [48].

36 Chapter 3. Sequential Vector Packing

We implemented the greedy algorithms, the enumerationisteuand the
integer linear program. We performed our experiment on MecB, see Ap-
pendix A.1.

3.5.1 Mixed Integer Program

Even if the ILP-formulation of Section 3.2.1 is a good stagtipoint for our
theoretical results, it turns out that in practice only nuedisized instances can
be solved with it. One problem is the potentially quadratiover of edge flow
variables that makes the formulation prohibitive alreamtlydmall instances. To
reduce the number of variables, it is helpful to have an uppand on the length
of the longest edge. One such bound is of codtsbut ideally there are smaller
ones. As our real-world instances are windowed instancesvthdow size is
a trivial upper bound that helps to keep the number of vaggmtdw. A further
problem is that, even if the bin vector is already determjrted MIP-solver
needs to branch on the andy variables to arrive at the final solution. This
can be avoided by representing the bin vector comporigras a sum of 0-1-
variablesz], such thath, = .27 andz] > 27 ,. If an edgee usesi units
of resourcer, i.e., ther-th entry ofw, is i, we include a constraint of the form
ye < z[. This allows to use the edge only if there are at le¢assources available.
With these additional constraints, the edge variaplasdx need no longer be
binary. For integral values of’, only edge-variables that do not exceed the bin
vector can have a value different from zero, so that in thie@very fractional
path of the resulting flow is feasible with respect to the kéeter, and thus all
paths have the same (optimal) number of breakpoints (otkeravshorter path
could be selected resulting in a smaller objective functi@oe). With this mixed
integer linear program the number of branching nodes ididedly reduced, but
the time spent at every such node is also significantly isg@aStill, the overall
performance of this program is a lot better than the originedger program.
Small instances (inst2 and inst3) can now be solved to ofitymaithin a few
minutes, cf. Table 3.1 that summarizes information on ostiainces. The bigger
instance inst4 of dimension 22 can be solved to optimalitytdital bin sizes in
the range from 22 to 130 within less than 3 hours.

We observed that on this mixed integer program feasibldisolsiare found
after a small fraction of the overall running time. Hence, eemsider this ap-
proach also as an alternative heuristic to come up with gohdisns.

3.5. Experiments 37

3.5.2 Setup and Computational Results

We will mainly compare solution qualities, because the mgtimes of the dif-
ferent approaches are orders of magnitude apart. On marhedhstances a
calculation for a fixedB takes at most some seconds for the greedy algorithms
and several hours for the mixed integer linear program. kworexperiments,
we let the enumeration heuristic run for 10 minutes whicmsebéke a realis-
tic maximum time that an “online” user would be willing to wébr a result in
our application. This value is relatively arbitrary, weatsbserved good results
for shorter running times. We then fix the number of repetiiof the guessing
phase of RHE to be as many as it takes td|téf;, the sum of the guessed lower
bounds, exceed some fractionBf This fraction is initially chosen a$9% and
adaptively decreased after each run as long as the targetedft 10 minutes is
not exceeded. The subsequence length is initially fixed v@#ipect to the es-
timated number of breakpoints that we get by running botledyepproaches.
We set it to one half times the average distance between teakpoints and
increase it adaptively if the lower bound does not grow anyevadter a fixed
number of repetitions in the initialization phase. By thaptie choice of both
the subsequence length and the fraction the algorithm isstabith respect to
changing values aB, d and the time that it is run.

In Figure 3.5.1 we show the relative performances on ourdsggeal world
instance (Instl). The different data points correspontdeatgorithms GEEDY-
GROW, GREEDY-SHRINK, RHE and the linear relaxations of the two different
ILP formulations, i.e., the one with (“frac”) and the one mout (“fracd”) the
z-variables introduced in Section 3.5.1. The values repteses ratio of the
solution found by the algorithm to the optimal integral gmno that we calculated
using the mixed integer programming formulation. The figsinews that for
small values ofB GREEDY-GROW produces results that are close to optimal,
whereas for bigger values the quality gets worse. An expiaméor this behavior
is that GREEDY-GROW builds a solution iteratively. As the results of Section
3.4.1 show, the greedy algorithms can be forced to take idesi®ased only on
the tie-breaking rule. On this instance tie-breaking isduseseveral values of
B, which leads to an accumulation of errors in addition to tifeerent heuristic
nature of the method. Note that by definitioREEDY-SHRINK is optimal for
B = || >, si|l1, which is 196 on this instance. In order to have a meaningful
scale we let the:--axis stop before that value.

In Figure 3.5.2(a) we present the quality of the solution&/deed by RHE
relative to the optimal solution on four further instancB&te that for different
instances different values @& make sense. Instance Instl-doubled is obtained
from Instl, by the doubling transformation used in Obséove3.8.

38 Chapter 3. Sequential Vector Packing

3.5

25

15 |

05 4

20 40 60 80 100 120 140 160 180

Figure 3.5.1: Computational results for the different approaches. Plotadio
of solution value to optimal solution value versus total fire B.

In Figure 3.5.2(b) we compare the best of the two greedy t®tuthe result
of RHE? . Instance rand-doubled is an instance where first the deonaihdec-
tors are drawn uniformly at random and then a doubling t@mnsétion is done
to make the instance potentially more complicated. It cowltbe solved to op-
timality by our MIP approach and does therefore not occurigufe 3.5.2(a).
Compared to the other instances the greedy algorithms doenfairm too badly.
One reason for this is that we chose a uniform distributiantifie resources.
Therefore, the tie-breaking rules make the right choicesdeerage”. On the
other hand, on the doubled real-world instance Inst1l-dsiRIHE gives supe-
rior results and in particular for higher valuesi®the greedy algorithms perform
comparatively poorly.

3.6 Open Problems

The main open problems for sequential vector packing are:

2Note that even if we use the greedy algorithms to determia@#inameter settings of RHE, these
results are not visible to RHE.

3.6. Open Problems

22
—e—inst2
——inst3
—a—inst4
, | —e—insti-doubled
1.8 |
16 |
14 L
12 b
1 2 AL
15 65 115 165 215 265 315
(a) Ratio of enumeration heuristic to optimal solution o fivstances.
1,2
1
08
06
/
04 «"vf
—=—inst2
02 ——inst3
——inst4
—*—inst5
——rand-doubled
0
0 50 100 150 200 250 300

(b) Ratio of enumeration heuristic to best of greedy algani on five instances.

Figure 3.5.2: Results on the instances of Table 3.1.

40

Chapter 3. Sequential Vector Packing

name| n d | window size| note
instl | 4464 | 24 28
instl-doubled| 8928 | 48 56 instl, “doubled”
inst2 | 9568 | 8 28
inst3 | 7564 | 7 28
inst4 | 4464 | 22 28
rand-doubled 2500 | 26 2500 “doubled” random instance

Table 3.1: Summary information on the instances

e Whatis the best achievable approximation ratio with resfmethe number
of breakpoints or the size of the bin-vector?

e How is the “best-possible” trade-off curve between thesedgwoals?

e Is there a method to analyze the growth of the lower boundhefan-
domized enumeration heuristic in a meaningful way?

e More generally: Is there a practical algorithm or heurigtiat clearly out-
performs our algorithms on instances similar to our tegtimses?

Chapter 4

Foundations of LP-based
Optimization Techniques

Die beste Basis fur die Grundlage ist das Fundament.
(toast)

In this section we present the theoretical foundationsef#iiroad optimiza-
tion related material covered in Chapter 5. In contrast éoviéry brief algorith-
mic preliminary Chapter 2 we will describe in more detail thelerlying theory
because this topic is further off the classical computesrsm canon.

4.1 Background

Generally, the entity we are dealing with are linear prograifithe form

ZLp = max {cx Az <bx € Rff_} , (LP)
and integer linear programs of the form

zp=max{cz: Az <V, xeZ}} , (IP)

whereA, A" € R™*" b b € R™, ¢,/ € R™. In this presentation we will not
distinguish between column and row vectors notation-wise,it should always
be possible to infer a meaningful interpretation of the @exts column and row
vectors from the formulae. This slightly sloppy approachl& adopted in the
classical textbook [97]. In contrast to the general intggegramming problem

41

42 Chapter 4. Foundations of LP-based Optimization Technique

(for example in the form IP) the linear programming probldéan éxample in the
form LP) can be solved in polynomial time [79].

One goal of this section is to show how to use linear programgmiethods to
obtain solutions to integer programs of the form IP. One obsiway to do so is to
setA = A’ b=1",c = . Inthis case LP is called tHimear relaxationof IP and
it holdszip < 2 p. Furthermore, if the optimal solutioryy to 2. p happens to be
integral, it is an optimal solution to IP. Obviously, for N#®mplete problems this
easy case does not occur in general. Two approaches thateesedrogramming
to find optimal or at least provably good solutions to IP lar@nch-and-cuand
branch-and-pricalgorithms.

In this chapter, we review some of the basic theory necegeatiie under-
standing of these approaches: Linear Programming DugigySimplex Algo-
rithm, some fundamental theorems from Polyhedral Theowfimally the basic
branch-and-cut and branch-and-price approaches theassehs most of this is
well-established theory that has been presented fronréifteangles in several
textbooks we will not prove all results. The outline and mafsthe theorems
of the first part of this section follow parts of [97] and arevq@emented with
material from [81, 29, 128, 6, 133, 115, 91].

4.2 Duality

With every (primal) linear program we can associattual linear program, the
dual of which is again the same primal linear program. It hasen fruitful to
study the properties of such primal/dual pairs of lineagpams. Here, we will
consider the following linear program P and its dual D:

zp = max{cz : Az < b,z € R} } (P)

wrp = min{ub : uA > c,u € RY'} (D)

Itis straight-forward to show that the dual of D is again Pdth P and D are
feasible, we can get upper boundste from the dual:

Lemma 4.1 (Weak Duality) If z* is primal feasible and* is dual feasible, then
cr® < zp <wep < utd.

4.2. Duality 43

Proof. Dual feasibility and nonnegativity af* implies
j=1 =1
Primal feasibility and nonnegativity af* implies
(Z (aijmj)ui = > u Ax* <u*b . (4.2.2)
i=1 j=1
As this holds for any primal-dual feasible pair, it follows < wp . O

The strong version of the above theorem states that for pdoed feasible
linear programs even equality holds for the primal objectraluez p and the
dualwyp.

Theorem 4.2 (Strong Duality) If either of z p and wyp is finite, then bothP
and D have finite optimal value andp = wyp.

The correctness of this theorem follows from the correctrméghe simplex
algorithm that we review in the next section.

Corollary 4.3 There are four possibilities for a dual pair of problems P dnd
1. z p andwyp are finite and equal.
2. z1p = oo and! D is infeasible.
3. wp = —oco and P is infeasible.

4. Both P and D are infeasible.

By strong duality(z*, «*) is a pair of primal/dual optimal solutions if and

only if ex* = bu*. For this to happen, equations (4.2.1) and (4.2.2) have to

hold with equality. From this the following result about thteucture of optimal
solutions follows (after inspection of equations (4.2.40§4.2.2)).

Theorem 4.4 (Complementary Slackness).etx andu be primal and dual fea-
sible solutions, respectively. Thenand « are both optimal if and only if the
following two conditions hold:

1in this section we use the slightly sloppy notation s = oo” to say that the primal is un-
bounded, respectively for the dual.

44 Chapter 4. Foundations of LP-based Optimization Technique

Primal complementary slacknessFor each column index < j < n either
T = 0or eril ;Ui = Cj.
Dual complementary slacknessFor each row index < i < m eitheru, = 0
or Z;‘L=1 AijT; = b;.
This simple theorem is crucial both for the general theorynafar program-
ming and for the analysis of many approximation algorithrAsother simple

but useful result is-arkas’ Lemmawhich gives a certificate for the infeasibility
of a system of linear inequalities.

Theorem 4.5 (Farkas’ Lemma) Either @ := {z € R"} : Az < b} is nonempty
or (exclusively) there existsc R such thatvA > 0 andvb < 0.

Proof. Considerzip = max{0z : Az < b,z € R} and its duahup =
min{vb : vA > 0,v € RT'}. Settingv = 0 yields a dual feasible solution.
Therefore, by Corollary 4.3 only the following two cases caour:

1. ztp = wp = 0, then@ # 0 and for allv € R it holds that ifvA >
0 thenvb > 0.

2. wp = —oo, then@ =) and there must beaac R’ such thawb < 0 and
vA > 0.

O

There are more variants of the Farkas’ Lemma that can easjnown to be
equivalent. An exemplary one is

Corollary 4.6 Either{z € R" : Az = b} # 0or{v € R™ : vA > 0,vb <
0} #0.

4.3 Simplex Algorithm

Before we present the simplex algorithm, we first introdingertecessary termi-
nology to describe this algorithm concisely. For ease of@néation we consider
linear programs with equality constraints, in particul@nedefine what we mean
by a linear program of form LP in this section:

2p = max{cr : Av =b,x € R} (LP)
wrp = min{ub : uA > c,u € R™} (DLP)

4.3. Simplex Algorithm 45

The theorems on weak and strong duality and complementkrsss also
hold for this formulation. We assume that redundant equoati@gn the linear
algebra sense) il have been removed and thus raAk = m < n. From
this it directly follows that there exists an x m nonsingular submatrid g =
(ag,,-..,an,,). Without loss of generality, we assume tht consists of the
first m columns ofA. Let the rest ofA’s columns be the matri¥ y, so that
we can writeA = (Ap, An) andApap + Ayazy = bfor Az = b. As Ap
is of full rank, it is meaningful to defines = Az'b andzy = 0. The vector
x = (zp,xN) IS asolution todz = b.

Definition 4.7 e The nonsingularn x m matrix Ap is called abasis
e The solutiontg = Aglb, rny = 0is called abasic solutiorof Az = b.

e 1 is the vector ofbasic variablesnd z is the vector ofnonbasic vari-
ables

o Ifup = A;b > 0then(xzp, zy) is called abasic primal feasible solution
to LP andAp is called aprimal feasible basis

Similarly, for the dual letc = (cp,cy) be the partition ofc induced by
the index setB of the basis. We set = cpAz' € R, the motivation for
which are the primal complementary slackness conditiorscaR that we are
considering a formulation with equality constraints in grenal LP. Therefore,
the dual complementary slackness conditions are alwafjiéfd] With the above
setting the slack A — ¢ of the dual constraints is given by:

uA —c=cpAz'(Ap, Ax) — (cByen) = (0, cpAz'An —en) . (4.3.1)
-~ ~——
“rp” [l
As alsoxy = 0, the complementary slackness conditions are always adfill
so that the definition, = cBAJg?1 leads to a pair of primal and dual solutions
(zp,zn) = (A5'0,0) andu = cpAy' that is complementary slack. On the
other hand, itis not guaranteed thds a dual feasible solution. For this, we need
uA > ¢, which simplifies tOCBAglAN > cy from (4.3.1). If this inequality
holds, Ap is called adual feasible basis From the complementary slackness
theorem it follows that ifA 5 is primal and dual feasible, then= (zp,xn) =
(Az'b,0) is an optimal solution to LP and = cg A" is an optimal solution to
DLP.
Given a basif, it is useful to rewrite the LP in a form that reflects the cleoic

of B. The following equivalent reformulation of LP is called tb@nonical form
of a linear program:

46 Chapter 4. Foundations of LP-based Optimization Technique

2p = cpAg'b + max(cy — cpAzt An)rn (LPg)
rp+ At Avan = AR'D
xp20,zy 20

Let Ay = Az'An,b = Ay'bandey = cy — cgAz'Ax. Then, LB
becomes

2p = cpb+ maxeNTN (LPp)
rp + ZN:L‘N =0
zp > 0,zy 20 .

Analogously, we defin@; = Az'a; andg; = ¢; — cga;. Then we can
rewrite L Py in the following form:

2Lp = cgb + max Z Cixj (LPp)
jEN
rp + Z a;jxr; = b
JEN

zp > 0,zy 20

Apart from the importance for the general simplex algoritimabove form
has intuitive appeal: For a feasible baslsve can directly read off the values
of the basic primal feasible solutiar’ associated with3 asz* = (b,0). Fur-
thermore, dual feasibility (and therefore optimality fqpramal feasible basis) is
equivalentta < 0. The value

CN = CN — CBZN =cny — uAn (432)

is called thereduced price vector For minimization problems it is called the
reduced cost vectorObserve that the prices can be calculated independently of

each other, i.e.,
Ej = Cj — uaj . (433)

The first summandgb in the objective function of LB is the objective value
for the current basic feasible solution, the shfi_ , ¢;z; expresses in terms of
reduced prizes the potential improvement from increasimg-pasic variables.
From this formulation we can also read off simple upper bawrthe objective
function, which we also use in our column-generation athaomi

4.3. Simplex Algorithm 47

Lemma 4.8 Assume thap~7_, z; < « holds theregb < zip < ¢pb + KCmax,
Wherecmax = max;cn ;.

Two given basesip and Ap: areadjacentif |B \ B’| = |B'\ B| = 1,
i.e., B’ can be obtained fron? by exchanging one column. The simplex al-
gorithm to be presented below works by moving from one basentadjacent
one and iterating this step. For such a move we have to dediiEhwolumn
enters and which one leaves the basis. If all primal basisiigasolutions are
non-degeneratm the sense defined below, we will see that the entering colum
determines the leaving column.

Definition 4.9 (Degeneracy)A primal basic feasible solutionp = b,xn =0
is degeneraté b, = 0 for somei.

Lemma 4.10 Suppose all primal basic feasible solutions are nondegereif
Ap is a primal feasible basis and, is any column ofdy, then the matrix
(Ap,a,) contains, at most, one primal feasible basis other tidan

Proof. All variables in N \ {r} have to stay nonbasic, so that we can write the
constraints as

rp + arx, =b
:I:B 207:1:7“ ZO N

case 1@, < 0. Thenascp = b— a,.x, it follows that to whatever positive value
« > 0 we setz,., no basic variable will ever become zero. Therefore, there
is no other primal feasible basis (Al 5, a,) thanAp.

case 2 At least one component @f. is positive. Then defina by theminimum
ratio rule
N\ = min{b; /@y : Tir > 0} = bs/Tsr (4.3.4)

sothath—a, \, > 0 andb, — @, A\, = 0. An adjacent primal feasible basis
Ap can be obtained froml z by deletingB; from B and replacing it
with r. By the nondegeneracy assumption no other basic variatterth
becomes zero and no other adjacent basis exists.

O

In order to move from the canonical form gRo LPg- one can execute one
Gauss elimination step with pivot elemént..

48 Chapter 4. Foundations of LP-based Optimization Technique

Corollary 4.11 Supposeld s is a primal feasible nondegenerate basis that is not
dual feasible and, > 0. Thenifa, < 0, the primal is unbounded. Otherwise, at
least one component of is positive andA z(» the unique primal basis adjacent
to Ap that contains,. is such thatzm x5 > cpxp.

Having introduced the basic terminology we can now congidebkcribe the
main part of the primal simplex algorithm.

Primal Simplex Algorithm, Phase I
Initialization Start with a primal feasible basig.

Optimality Test If ¢y < 0, Ap is dual feasible, stop(zp, zx) = (b,0) is an
optimal solution. Otherwise continue with the Pricing step

Pricing Choose am € N with positive reduced prizef > 0).

Unboundedness testf @, < 0, z.p = oc.

Basis changeOtherwise, find an adjacent primal feasible basjg. that
containsa,.. SetB to B(") and return to Optimality Test.

The choice of the entering variable is not specified here. There are various
possible pricing rules, one of which is to take= argmax. ;. However, in
practice other rules are used, see [29, 126]. As we have seleemma 4.10
under the nondegenerate assumption the leaving varsaislevell-defined and
the values of the basic feasible solutions increase in gardtion. As there are
only a finite number of bases the following theorem holds:

Theorem 4.12 Under the assumption that all basic feasible solutions ama-n
degenerate, Phase Il terminates in a finite number of stebsravith an optimal
or an unbounded solution.

If not all basic feasible solutions are nondegenerate, bloeetheorem still
holds if one additionally uses specific rules to choose theite variable, see
[14, 115].

To make the description of the primal simplex algorithm ctetey it remains
to specify how we can get (in Phase |) a primal feasible hagisf the problem
is feasible. To achieve this, one sets up a transformedrlpregram with addi-
tional penalty variables¢ for each row, and changes signs of the rows such that
b>0.

4.3. Simplex Algorithm 49

Za = max{— Z a2l Az + Iz® = b, (z,2%) € RTT"} (LP%)

i=1

This linear program is feasible: a basic feasible solutiofxf, z) = (b,0).
It is also not unbounded as < 0 and thus has an optimal solution. It can be
solved by the Phase Il simplex algorithm above starting withbasigb, 0). If
z% < 0 the original LP must be infeasible, as it is impossible toadkepenalty
variables to zero and preserve feasibility of the origirallf z, = 0 any optimal
solution hast® = 0 and hence yields a feasible solution to the LP. If all penalty
variables are nonbasic this solution is basic and can betljingsed for Phase II.
Otherwise a sequence of degenerate basis changes mighaygsic feasible
solution to LP. Otherwise a case might occur where this isposisible. But
then it can be shown that certain constraints in LP must bendaiht and the
corresponding penalty variables can be dropped. This lEaddasic feasible
solution again, see [29].

One issue not discussed here is how to adapt the above slasidaslex
algorithm to problems igeneral form where we have lower and upper bounds
on the variables and on the constraints.

ZLp = max cx (LPgen)
b<Ax <d
e<z<f

It is of course possible to apply the above algorithm to suébriaulation, but

in practice one uses an algorithm that is tuned for thisrggtin which then the
definition of basic, nonbasic and dual variables and comeitgary slackness
needs to be adapted, see [127, 29]. We will briefly encouhietytpe of problem
in Section 5.6.4.

In general, an implementation of the simplex method will statre or cal-
culate the matricesly. Instead, it will store the current basiss and cal-
culate the necessary parts dfy, namelycNAjg1 for the reduced cost vector
ty = cy — (enAz")An and the columm, = A5'a, for the minimum ratio
test. Any simplex algorithm that follows this scheme is edlevised simplex
method In a real implementation of the simplex algorithm one haddal with
diverse efficiency issues, numerical and stability prolsiéhat are out of the
scope of this thesis, again see [29] for detalils.

50 Chapter 4. Foundations of LP-based Optimization Technique

4.4 Dual Simplex Algorithm

The dual simplex algorithm is the dual equivalent to the atisimplex algo-
rithm: Instead of moving from one primal feasible basis totaer until it is also
dual feasible, it moves from one dual feasible basis to amaihtil this basis is
also primal feasible. The following theorem correspond$tteorem 4.10 and
Corollary 4.11 for the dual simplex algorithm.

Theorem 4.13 Let A be a dual feasible basis with, < 0. If as; > 0 for
all j € N, then LP is infeasible; otherwise there is an adjacent deakible
basisAp), whereB(") = B U {r} \ {B;} andr € N satisfiesz,, < 0 and
r= argminjeN{Ej/asj Tasy < 0}

The simple proof can be found in [97]. The resulting Phase the dual
simplex algorithm is symmetric to the Phase | primal simg@kgorithm.

Dual Simplex Algorithm, Phase I
Initialization Start with a dual feasible basitg.

Optimality Test If by > 0 Ap is primal feasible, stopzz = b, 2y = 0is an
optimal solution. Otherwise continue with the Pricing step

Pricing Choose as € N with b, < 0.

Infeasibility test If @,; > 0Vj € NV LP is infeasible.
Basis changeOtherwise, let = argmin,cy{¢;/as; : a@s; < 0}. B «—
B = BU{r}\ {Bs}, return to Optimality Test.

Often the dual simplex algorithm is preferred over the ptisi@plex algo-
rithm because its implementations are usually faster. ttiquéar, in a branch-
and-cut setting it is preferable to use the dual simplexSssxtion 4.6.

4.5 Polyhedral Theory

Here we present some connections of linear programminglidedral theory.

Polyhedral aspects become particularly important whergta is to solve an
integer program by means of linear programming. The prolilens is that the
set of feasible solutions to IP is given implicitly via a lareprogram. We be-
gin with the necessary definitions, then we present the mgsbitant theorems

4.5. Polyhedral Theory 51

without proof and discuss their relevance in the contextratfical approaches
to solving large integer programs.
An affine combinatiorof pointsz!,...,z* in R" is a linear combination
Mal+, ..+ such tha | A = 1.
A conic combinationof points z!,...,2* in R" is a linear combination
Mzl .. ., + 2® such thaty;, > Oforalli =1,..., k.
A convex combinatiorof points z!,...,2* in R™ is a linear combination
Mal+, ...+ such thab | A\ =1and); > 0foralli =1,...,k.
Theaffine hullof a setS C R, denoted by affS), is the set of all points that
are affine combinations of (a finite number of) pointsSinSimilarly, we define
the conic hullcond.S) and theconvex hullcony(.S). A set of points isaffinely
independenif and only if none of the points is an affine combination of ttker
points.

Definition 4.14 A setP C R™ is a polytopeif it is the convex hull of finitely
many vectors. A s&t' C R™ is aconeif x € C impliesAz € C forall A > 0.

A coneC is polyhedralif it can be represented afr € R™ | Az < 0}. A
polyhedronP C R™ is the set of points that satisfy a finite number of linear
inequalities; i.e.,P = {x € R" : Az < b}.

Any conic hullis a cone. A polyhedronis said tolb@undedf it is contained
in a box[—w,w]™ € R™; it is rational if it can be represented as above by a
matrix A and vecton with rational coefficients. We will always assume that all
coefficients are rational. Thdimensiondim(P) of P is defined to be one less
than the maximum number of affinely independent point8.in

Definition 4.15 An inequalityrz < g [or (w, 7)), m € R™, 7y € R, is called
avalid inequalityfor P if it is satisfied by all points irP. It is calledsupporting
for P if it has a non-empty intersection with.

In the integer programming setting, valid inequalities @fr@articular inter-
est.

Definition 4.16 The setF" defines daceof the polyhedrorP if F' = {x € P :
mx = mo} for some valid inequalityr, my) of P. If F' is a face of P with
F = {x € P: mx = my} the valid inequality(r, 7o) is said torepresenbr
definethe face. The zero-dimensional faceg’oére calledextreme pointsF' is
afacetof P if F'is a face ofP and dim{F') = dim(P) — 1.

To exemplify these definitions we can give a simple geometterpretation
to the second form of Farkas’ Lemma, Corollary 4.6: If (andyof) a vectord

52 Chapter 4. Foundations of LP-based Optimization Technique

is not contained in the con@ = con€ay, ..., a,} generated by the columns of
matrix A, then there exists a valid inequality f6f separating it fronb. More
importantly, the above definitions allow us to state two imgot theorems in
polyhedral theory concisely:

Theorem 4.17 (Finite Basis Theorem (Minkowski, Weyl), [11§ A convex
cone is polyhedral if and only if it can be represented as acball of finitely
many vectors.

A set P of vectors is a polyhedron if and only # can be represented as
P = Q@ + C for a polytope and a polyhedral coné’.

Theorem 4.18 (Fundamental Theorem of Linear Programming, 91, 127])
For any linear program LP the following statements hold

e If there is not an optimal solution, then the linear prograsneither un-
bounded or infeasible.

e If the linear program has an optimal solution, then there s @ptimal
extreme point solution to this linear program.

e z* € R} isanextreme pointaP = {z € R | Az = b,z > 0} if and only
if z* is a basic feasible solution of the systelm = b, x > 0.

The finite basis theorem states that there are two equivailns of a poly-
hedronP: It can be seen as the intersection of half-spaces as ergrbysthe
inequality systemAx < b or it can be seen as the sum of a polytope and a
polyhedral cone. Both the polytope and the cone are gemevateonvex/conic

combinations by a finite set of points, therefdle= conv({z!,...,2*}) +
cond{z**1, ... 2¥}) and one also says thatis finitely generatedy the sets
{x', ... 2k} and{zF*tt ... 2V).

The fundamental theorem of linear programming, the prooklich does
not necessarily rely on the simplex method, identifies theeexe points of the
polyhedron defined by the LP and the basic feasible solupooduced by the
simplex method.

The above theorems give a theoretical foundation to LPébapproaches
for solving integer programs. Assume there are a finite nurabsolutionssS
to a given integer linear program. Then c6fiy can be described by a finite
number of linear inequalities by the finite basis theoreme Taximum of a
linear function over con\s) is attained in an extreme pointof con\(.S), by
the fundamental theorem, which impliess S. Therefore, if the description of
convS) by linear inequalities is given, the solution of the intelyjeear program

4.6. Branch-and-Cut 53

can be obtained from the solution of a linear program. Therapsion thatS
is finite can be dropped, also without this assumption ¢8ins a polyhedron.
To sum up, the above theorems show that given a polyhefiren{z € R :
Az < b}, S =Z"N P the integer linear programming problemux{cz,z € S}
can be solved by solving the problamux{cz : + € conyS)} and this can be
written and solved as a linear program if the descriptionoohgS) is available.

From a theoretical point of view, the above insights raigeghestion which
inequalities in a given formulation are necessary to dbsaipolyhedron. As it
turns out, exactly the inequalities that represent facetsiacessary, see [97].

Lemma 4.19 For each facetF' of P, one of the inequalities representirtgis
necessary in the description &%

Lemma 4.20 Every inequalitys”x < b in the formulation, that represents a face
of dimension less than d{ift) — 1 is irrelevant to the description aP.

For full-dimensional polyhedra these lemmata lead to a clegacterization
of facets:

Theorem 4.21 ([97]) A full-dimensional polyhedro® has a unique (to within
scalar multiplication) minimal representation by a finitet 8f linear inequalities.
In particular, for each facef; of P there is an inequality’z < b; (unique to
within scalar multiplication) representing; and P = {z € R" : a’x < b;,1 <
i <t}

For polyhedra of lower dimension there are similar statdmesee [97, 115].

4.6 Branch-and-Cut

In practice, the complete inequality description of cgfivtypically has expo-
nential size and is almost never available except for a felvstredied problems.
On the other hand, this critique seems overly pessimisticiasot necessary to
have the complete description: For an optimal solutigiawith respect to a fixed
objective function only a small part of the constraintswill be binding, in the

sense thatp lies only on a few of the hyperplanes defineddbyFor this reason,
zopt COUld also have been obtained from a formulation in which leages out
all of the non-binding constraints as long as they are ndated. This motivates
an approach in which we use valid inequalities to iteragiwtengthen a given
linear programming relaxation with the aim of finding an (oyl) solution that

violates none of the constraints including those that wefiteolt.

54 Chapter 4. Foundations of LP-based Optimization Technique

More formally, such an approach starts with an integer lipgragram and
solves its linear programming relaxation ¢,Rbtaining a solution:” with ob-
jective valuez(s. As already discussed in the introductionyfis feasible for IP
itis an optimal solution to IP. Otherwisep < 2, 2° ¢ con.S) and there is a
valid inequality(w, 7o) that separates’ from cony.S). Assume that we get such
a valid inequality from aseparation oraclend add it to the linear programming
formulation to obtain a new relaxation k.PSolutionz® is no longer feasible for
LP;, Therefore, by resolving the linear program we get a satutib # =" and
we havezlp < 2. By iterating this approach we get a sequence of solutions
and objective values that hopefully converges to an integgémal solution. As a
given optimal solution remains dual feasible after a valehjuality (also called a
cutin this context) has been added it is usually advantageausstthe dual sim-
plex algorithm to reoptimize. This approach is calladting-plane algorithm
In theory, it can be shown that there are general purposeaéepaalgorithms
that always find violated valid inequalities as long as tkeaitive solutionz? is
fractional, such that the above cutting-plane algorithrinige. The separation
algorithms were developed by Gomory, Lovasz, and Schrjp4, 65, 115].

In practice, pure cutting plane algorithms are rarely usélde complexity
of this approach is hidden in the complexity of the separmaticacle. This is
indeed problematic, as finding a separating hyperplane eashtard as solv-
ing the whole problem. A famous theorem by Grotschel, lsavand Schrijver
[68] says that under mild technical assumptions on the g®gon of the poly-
hedron there is a polynomial time reduction from the optatian problem of
finding an optimal solution to an IP to the separation probtériinding a valid
inequality ¢r, 7o) that cuts off a given infeasible solutiat from cony.S). Sym-
metrically, there is a polynomial time reduction from the@aeation problem to
the optimization problem.

Still, it is possible that for a given solutia# to LP; the separation problem is
easy. In particular, there can be families of valid inediesifor which separation
is a polynomial time algorithm or for which there are at lefficient heuristics
that often find a separating hyperplane, when there is onehisnscenario, it
often pays off to combine the available non-exact separatigorithms with a
branch-and-bound approach as follows.

Run the cutting-plane algorithm as long as no integral fdasolution has
been found and as long as the non-exact separation algdfiitkis separating
hyperplanes. Thehranch i.e., partition (a fixed subset of) the set of optimal
integral feasible solutions into two parts, by imposing adition that explicitly
excludes the current infeasible solutiGh and solve recursively the two sub-
problems, using the solutions obtained from the cuttirapplsteps as bounds.
A simple way to achieve a partition of the solution space itat@ a fractional

4.6. Branch-and-Cut 55

variablez’ € ' and imposer; < |z}] for the first subproblem and; > []
for the second subproblem.

As in classical branch and bound algorithms we can discatgbpreblem
if the objective value of the relaxation is smaller than awnantegral feasible
solution. Put simply, a branch-and-cut algorithm is nogtbnt a classical branch
and bound algorithm, in which a cutting plane algorithm isdig every node of
the branch and bound tree to strengthen the bound.

As for the cutting planes used, it is often easy to find somdlyaof sep-
arating hyperplanes, but it is not always clear, how effiecthese are. Ideally,
we would like to have only facets of cof) as separating hyperplanes. Unfor-
tunately, it is often very difficult to find these or to proveatrsome separating
hyperplane is indeed facet-defining. For the case of thecleehouting prob-
lem, a variant of which we will study in the next chapter, ette® dimension of
the vehicle-routing-polytope is unknown, which makesfticilt to prove that a
given hyperplane is facet-defining. One reason is that th&t prominent proof
strategy is to exhibit difconv(.S)) many affinely independent points that
lie on the hyperplane. Moreover, the associated sepanataiiem could be too
difficult to solve. In this context it makes more sense to halative measures
for the quality of valid inequalities (and trade them off ag the difficulty of
finding them).

Definition 4.22 If 7z < my and ux < po are two valid inequalities forP,
(m, mo) dominateg u, 1) if there existsw > 0 such thatr > up andmy < upy,

and (m, mp) # (up, upo).

Definition 4.23 A valid inequality(r, g) is redundanin the description of, if
there exist: > 1 valid inequalitieg(=*, 7)) and weightsi; > 0,fori =1,... k
such that>>% | w7, 2% | uymo) dominatesr, mp).

Sometimes it is already remarkable that the inequalitiess faimily are sup-
porting.

This was only a superficial description of branch-and-cgogathms. There
are several important aspects that need to be consideredimpdementation:
The generated cuts can be globally or only locally valid, baly in the subtree
of the current node in the branch and cut tree. The cuts asdlystanaged ircut
pools The branch and cut tree needs to be stored in an efficienstfateture that
also depends on the policy of selecting the next node to ekgaonnected to this
is the choice of thbranching strategyhat selects how to branch in a given node.
Itis also not always clear when one should branch: It can &appat the cutting
plane algorithm keeps finding violated cuts (and increasiegsize of the linear

56 Chapter 4. Foundations of LP-based Optimization Technique

program to solve) without significant improvement in the boéuFor this reason,
one needs to decide when to interrupt the cutting plane ighgorand branch.
In connection with branch-and-cut alpoe- and postprocessing strategiage
discussed, because in practical applications they arellgdomportant for the
success of an implementation.

A complete description of all these components is out of tape of this
thesis. Some of these aspects are discussed in [1] and &8a]jrwhere the
authors explain how they implemented the SYMPHONY branoti-eut frame-
work, which we also used for our implementation. In [2] Adraiad van Hoesel
discuss the underlying theory and exemplary families dthiakqualities for ba-
sic combinatorial optimization problems in more detailndly, [21] and [104]
provide a wealth of references for branch-and-cut.

4.7 |IP Column Generation

In the last section we reviewed the branch-and-cut approgleh basic idea of
this technique is to leave rows out of the LP-relaxation apse there are too
many of them to handle them efficiently and most of them will be binding
for the given objective function. The column generationrapph applies the
same idea to the columns (variables) of the formulationtidity most of the
columns are left out of the LP-relaxation because thereaarenany of them to
handle them efficiently and most of them will be non-basiaimptimal solution
anyway. From this short description it is clear that colureneration can be the
method of choice when there are many variables in the fortionlaFollowing
[13] there can be several reasons why such a formulatioesaris

e A compact formulation of the problem may have a weak LP-agiax.
This relaxation can be tightened by a reformulation thadlves a huge
number of variables.

e A compact formulation of the problem may have a symmetriacstire
that causes branch-and-bound to perform poorly. A refoatian with a
huge number of variables can eliminate the symmetry.

e Column generation provides a decomposition into mastesabgroblems
(as we will see in the following). The subproblems can havatanal in-
terpretation in the problem setting which allows a straifgintvard incor-
poration of additional constraints into these subproblems

e A formulation with a huge number of variables may be the ormgwn
choice.

4.7. IP Column Generation 57

One class of problems that is particularly well-suited foluenn generation
consists of problems where the variable set can be pasitionto setsz! €
e, ..., z® € 7" such that any feasible solution has to fulfill two types of
constraints. First, constraints that are defined on eadheo¥driable sets alone,
i.e., constraints of the form* € X* = {z € Z%* : D"z < d,} for all
kE = 1...,K that are independent of each other. For example, in a vehicle
routing setting this could be the constraints for the felisibof a route of a
single vehicle. Second, coupling constraints that invallevariable sets. In
a vehicle routing setting this could be the constraints tiedine when a set of
routes constitutes a feasible solution. Such a problem earritten as

Zp = maX{Zc ZAkmk =bzFe Xt k= 1,...7K} (IPcompac)

k=1

Assuming that the set¥”* are bounded, such a problem can be automatically
transformed into an Integer Linear Program with many vaeisby theDanzig-
Wolfe reformulation

As the sets* are bounded, they contain a finite number of pofats*}/x,
and can thus be represented as

{xkeR”k: ZAW: ZA,”_1 Aee € {0,1},6=1,..., T

(4.7.2)
Now we simply substitute this equation fef and obtain théP Master problem

K T
zip = maxz Z kakt) YAkt (IPM)
k=1 t=1
K T
SO>S (AFaR N, =b (4.7.2)
k=1 t=1
Ty
> Mp=1fork=1,... K (4.7.3)
t=1
At €{0,1}, fort=1,...,Trandk=1,..., K (4.7.4)

The column generation method applies to linear programsyeséirst con-
sider the linear relaxation of the above integer prograsp ahlled thdinear
programming master probleiPM with objective valuez py. Its formulation
is identical to the integer program except that one demapgs> 0 instead of

58 Chapter 4. Foundations of LP-based Optimization Technique

Akt € {0,1} (A\k < 1is redundant). The idea of column generation is now
to mimic the behavior of the (revised) primal simplex algfom—>but instead

of explicitly calculating the reduced prizes (pricing) df monbasic variables
one solves an optimization problem (thecing problen) and thereby implicitly
prices the non-basic variables. To be more precise, theadsimplex algo-
rithm must be adapted in the following way to implement a nulugeneration
approach:

Initially, one selects a set of columns (at least one for dgctuch that the
Restricted Linear Programming MastéRLPM) problem, i.e., the LP relaxation
that comprises these columns only is feasible. In a typigplieation this is easy
to obtain or can be enforced by adding columns with highhauafable cost that
are infeasible to the subproblems but guarantee feagifblithe master.

In the next steps the simplex algorithm is mimicked by aking LP solving
and pricing steps. In stepthe current RLPM is solved using the primal simplex
algorithm to obtain a primal optimal solution vecttirand a dual optimal solu-
tion vectoru = (u®, u’*), whereu® represents the dual values of the constraints
of type (4.7.2) and.”* refers to (4.7.3). For each subproblérthe dual vector
defines reduced price$z — u®(A*z) — uf for eachz € X% (c.f. (4.3.3)). By
solving the following pricing problem

oy = max { (" —uPAM)z —uff 1z e X¥} (4.7.5)

max

one can mimic the simplex algorithm by adding the column eefiby the max-
imum in (4.7.5) ifek . > 0. If &, < Oforall 1 <k < K the current solution
2 to RLMP is optimal for the whole problem and the algorithrmiarates. A

column generation algorithm iterates the pricing and résglsteps until the
above termination criterion is met and an optimal solutmthe linear relaxation
is found. The correctness of this procedure follows fromdbeectness of the

simplex algorithm.

Historically, column generation was developed for lineemgrams not all
variables of which fit into main memory. Today, it is almostvays used for
integer linear programs in combination with a branch andidlapproach, which
together is then calleli® Column Generatiowor branch-and-price

One important reason for using column generation for Imt&yegrams is
that the linear relaxation LPM is often stronger than a seniplear relaxation of
IPcompaci It follows directly from the definition of Danzig Wolfe deotposition
that the linear programming master attains the value

K
2pm = maX{Zc’“m’“ Y ARk = b2k € con XM fork=1,... K} |
k=1

(4.7.6)

4.7. IP Column Generation 59

Figure 4.7.1: lllustration of different relaxations of an Integer LineRrogram
with masterAxz < b and one single subproble®z < d. The blue points
are feasible to the integer linear program. The yellow and ¢iieen area are
the solution space of the LP relaxation. The green and theared are the
convex hull of the feasible points férz < d and therefore the solution space of
the subproblem. The green area is solution space of therirsaxation of the
master problem after a Danzig-Wolfe transformation or alaagyian Relaxation
of Dz < d, adapted from [6].

which must be greater or equal than the linear relaxatioRidare 4.7.1 we see a
simple example where the linear programming master cameekighter bounds
than the linear relaxation. The valugy is exactly the value that one could have
obtained with a branch-and-cut approach that has exactageparoutines for
the subproblems. This means that for a given solution itkbec= X* for k =
1,..., K and adds a separating hyperplane to the formulation if orleeofests
fails. Such an approach is called tpartial convexification relaxationFinally,
also a Lagrangian relaxation (not discussed here), in wthielmaster constraints
are dualized and the subproblems are solved separataipsatixactly the value
zipm- The equality of the objective values of these three appremdoes not
mean that they are equivalent. Most importantly, duringsthieition process the
column generation approach has a primal feasible solutiaifedle, which holds
neither for the branch-and-cut approach nor for the Lagesmigelaxation. Also
the separation routine of the branch-and-cut problem iseinegal a different
algorithmic problem than the subproblems of the column gptien approach.
Finally, it follows directly from the finiteness of the singal algorithm with the
right selection rules that column generation terminatésr &f finite number of
iterations, which is not always the case for the partial eaification approach.

Similar to the branch-and-cut section, in this section weehanly seen a
short review of column generation. There are numerousldetad implemen-

60 Chapter 4. Foundations of LP-based Optimization Technique

tation issues that have been glossed over, we mention a févewnt. Typically
ordinary branching schemes that branch on single varigiglgerm very poorly
in a column generation setting so tisgecial branching schemese necessary,
and the same holds for primal heuristics. Also the columeciiln is non-trivial.
There is a trade-off between pricing in many columns at oncerder to de-
crease the number of simplex iterations at the cost of amfditicomputations
in the pricers and a bigger formulation of the master. It se&mnot even be
settled, what the most effective pricing rule is, i.e., whamlumn among those
with negative cost should be included into the next RLPM falation? A typi-
cal problem of column generation algorithms are osciliatinal values. Several
schemes exist to remedy this problem. Finally, pre- andgposessing plays an
important role in column generation algorithms and alschia literature. For
information on these aspects and more see [13, 126, 45, 46, 11

Chapter 5

Optimizing a Hub and Spoke
Railway System

Loaded like a freight train.
Flyin’ like an aeroplane.
Feelin’ like a space brain.
One more time tonight.
(Guns N’ Roses - Nighttrain)

5.1 Introduction

In the present chapter everything revolves around a péatiéreight train sys-
tem: The Cargo-Express service [112] of Swiss federal esisnSBB Cargo Ltd.,
which provides fast overnight transportation of goods. Taego-Express net-
work is operated as a (multi-) hub spoke system, the hubgyliba shunting-
yards.

The whole system is complex enough to pose a multitude oferigihg op-
timization problems, a few of which we will study here. Theimaroblem we
tackle is to route the freight trains through the network rfihd a cheap sched-
ule for them that respects constraints given by the realdymoblem. For the
cost of the schedule, we consider the cost of operating thmes and the cost
of the traveled distance.

The outline of this chapter is as follows: First we discus# tilbe Cargo-
Express service works in detail, then we present three rap&ekt a naive ILP
approach; then an approach that decomposes the routinglaediding problem

61

62 Chapter 5. Optimizing a Hub and Spoke Railway System

and uses the branch-and-cut method; finally we describetamative method
that is based on column generation, considers more comstieid jointly opti-
mizes the routing and the scheduling problem. After haviegussed the models
and their application to the real world problem we discussesalgorithmic ques-
tions of more theoretical flavor which are related to the simgrand scheduling
aspects. At the end of the chapter we present experimestatseand present
related work. (Although we usually give the related work aimel summary of
results in the introduction of a chapter, it is more natumaehto postpone it,
because a big part of the chapter is concerned with buildirgriodels which
constitute a prerequisite for the understanding of relaterk). It is clear that
the principal results of this section also apply to any ottel-spoke system
that is operated similarly. However, in this chapter we wiltk closely to the
SBB Cargo Express system: First, it is a motivating runnixaneple, second
and more importantly, we have had access to all the necedagato run our
optimization codes on it and could discuss the quality ofsnlutions with the
SBB Cargo planners.

5.2 Problem Description

We explain how our reference hub-spoke system, the SBB &&tgress Service
works. We describe the way of operation from the point of vadva customer
who wants to transport some containers or a set of freigtst tam a source
station in Switzerland to a destination station somewhése i Switzerland.
More precisely, the Cargo Express System is meant for cuestwho need such
transports regularly: A typical customer wants to have affixmount of goods
transported from station A to station B every week-day, @rgwonday in the
next half year. The customer has to announce in advance leer demand for
a given period. In general, this period corresponds to fie¢irie of the fixed
schedule that is currently generated once every year takiogonsideration the
announced demands. The schedule is constructed by handigtty adapted
in a “trial-period” after its implementation. If the demandhange over a year
or new customers want to be served, the SBB Cargo team grasateeds in
adapting the existing schedule to the new situation. Thagsis done by hand.

The transport itself works as follows. In the evening, thetomer deposits
her cars at the requested station. She can do this until aiasgbdeparture
time that can also vary among different customers for theesstation. After
that time the cars are picked up by a freight train which fpants them together
with other cars to one of the shunting yards (to which we uguafer as hubs).
Along its route a freight train picks up cars at differentistas. The process of

5.2. Problem Description 63

picking up the cars incurs a non negligible amount of time,dbuple time at
the stationswhich is mainly needed for a brake test and is therefordivels
independent of the number of picked up cars. After it hasedrat a hub, a train
is decoupled. The shunting is performed on humps. The caheafustomer are
coupled to an outgoing train that departs roughly aftertalcars have arrived
from incoming trains and have been coupled to the outgoaig.tiThis outgoing
train then delivers the cars at the destination. It can adgpbn that the train goes
to another hub where shunting takes place again. Traingtimmute between
hubs neither deliver nor pick up cars. A last possibility hattthe cars of a
customer are transported by a dedicated train directlydio trestination without
going through a hub. In one night each engine can performtigxae of these
tasks, i.e., going to and from a hub once including potdgtéiew rides between
hubs, or transporting a shipment directly to its destimatio

We next discuss some subtleties of the problem. The capafditye shunting
yards is limited: Only a limited number of cars can be stofezte¢ and only a
limited number of shunting operations can be performed iivargtime period.
The trains themselves have a limited capacity. The netwak containswitch-
backs i.e., a crossing or a furcation, which have the effect thattime to go
through this switchback to a given destination depends erditection a train
comes from. Furthermore, there might be stations at whichdwthree trains
are decoupled and coupled. Thus, such a station acts asaf sbrinting yard
without hump, but in general only very few trains are shuriteste. There is
also the issue of track-availability, although this is nataial during the night.
Finally, also the engine drivers have to be assigned to #iestand transported
to and from the trains in a way that is subject to various ragrs.

In 2005 and 2006 the system was operated as a single-hubsyii® close-
by shunting yards Daniken and Olten were used as a single $itialoting from
2007 the system will be operated as a multi-hub system withentitan one
hub. One reason for the change was the insufficient hub dg@addaniken and
Olten. Also the bigger Cargo-Rail system that does not quaeadelivery in one
night comprises several hubs and works similarly on a lasgale. The models
developed in this chapter are therefore also applicableiscst/stem (except for
Model 1 below, which assumes a single hub).

The primary goal of our optimization efforts has been to méie system
cheaper. The main costs are the costs of operating the engimiethe costs of
driving the necessary routes on the tracks. From the ab@aigédon it is clear
that it can be important to minimize the necessary hub-dgpac

64 Chapter 5. Optimizing a Hub and Spoke Railway System

5.3 Models

We present a sequence of models that mirror our attemptdue e optimiza-
tion problem sketched above.

5.3.1 Scope of the Models

It should be clear from the above description that a comprietdel of the SBB
Cargo system is very difficult to formulate. For this reaswsa,decided to ignore
some of the seemingly secondary aspects in our models: Wetdconsider
the problem of engine driver assignment. We do not consitemptoblem of
switchbacks and furcations. It is rather straight-forwhaodvever to construct
gadgets that transform the network in such a way that swatcklnd furcations
are taken care of at the cost of an additional blow-up of thevowk. For the
models we will ignore the exact sequence of shunting opmratat the hub and
then have closer look at these in Section 5.7.

In the next section we discuss the aspects of the problemvinatodel. The
three mathematical models that we present afterwards aritlyponly consider a
subset of these aspects.

5.3.2 Common Notation

We assume that we are giverfrailway) networkN = (V, E, ¢, ¢). The nodes
represent stations, hubs and junctions, the edges repthsdanacks connecting
those;¢ : £ — RT is the length function on the edges and £ — R is the
cost function on the edges. By C V we denote the set of hubs in the network.
To simplify the presentation we will write(e) mostly asc.. In the following we
give a list of parameters and features that we consider immuatels.

e The setS of shipmentslefines the cars to be transported. Associated with
a shipment € S are the following properties:
— sourcés) thesource station
— dests) thedestination station
— deparg(s) theearliest possible departure tina station sourde),
— arrives(s) thelatest possible arrival timat station dess),
— vol(s) thevolume i.e., the number of cars &f

5.3. Models 65

e The maximum train loadL,,., bounds the total volume that any engine
can take.

e Theshunting time at the huBy, ,.is the minimum additional time that a
departing train has to wait due to shunting after its lagirsigint has arrived
at hubh € H. This time is assumed to be independent of the number and
volume of the shipments.

e Thecouple time at the stationgg,, is the additional time incurred by
taking any set of shipments at a station. This time is inddpehof the
number and volume of the shipments taken.

e Thehub capacitycap, for each hubh € H specifies how many cars can at
most stay in the hub at any given moment in time.

e The engine costenginerepresents the cost of operating one engine.

e The average speeds used to calculate the time it takes the trains to travel
on the tracks.

Sometimes it is more useful to represent the source, déstinand volume
information of the shipments in gm x n) supply-and-demanahatrix M, such
that M (sourcés), dests)) = vol(s) forall s € S.

One part of a solution is eute of an engine through the network. By route
we mean a graph theoretic walk, which can in particular dorrgpeated edges
and nodes. Some of our solution approaches will restricivdil&s to (elemen-
tary) paths. This restriction is not admissible for our peob at hand, however
it can be circumvented in our solution approaches by a toamsdtion of the
original sparse network to a network on the complete graphotier part of a
solution is a specification of arrival and departure timesegch of the nodes on
the routes. We now define more formally the most general @eisi the railway
problem that we want to study.

Definition 5.1 (General Train Optimization Problem (GTOP)) Given a rail-
way networkN = (V, E, /¢, c), a set of hubdd C V a set of shipment§ and
the parameterd. ., Ts’gum, Touple CaP,s Cengine ¥ as defined above, find a fea-
sible solution of minimum cost. A feasible solution cossidithe sizé: of the
necessary train fleet and time consistent routeg:fengines with time consistent
arrival and departure times at the stations and hubs suchahahipments are
transported from their source to their destination respegthe time windows
and the other constraints given by the above parameters.

66 Chapter 5. Optimizing a Hub and Spoke Railway System

GTORP is obviously strongly NP-hard as it contains problekesthe travel-
ing salesman, bin-packing, and diverse scheduling prahlem

We discuss three models. The first one, Model 0, is a more srskeaight-
forward translation of the problem into an integer linearxgram. In Model 1 the
problem is decomposed and branch-and-cutis applied. Weafsed this model
at a time, when the SBB Cargo Express System had a single aitiatsit only
applies to single-hub systems. Model 2 is a column generafproach for the
multi-hub case.

The railway network for the SBB Cargo Express Service hasrififes and
1488 edges. Around 200 shipments are transported everyrdayreprocessing
phase we could condense the network to a network with 12 1sret&332 edges.

5.4 Model 0

From a practical point of view, when dealing with NP-hardigemns, it can be a
good idea to try to formulate the whole problem as an ILP argbtee this on a
realistic instance to get an idea of how “difficult”, in a fyzzense, the problem
is. Therefore, we experimented with different ILP formidas. As one could
expect from the number of constraints mentioned, the foatraris get rather
lengthy. In Appendix A.2 we present one that models all of ®E@onstraints
except for the hub capacity. We give the model in the ILOG ORtideiling
language [71] with comments. To get a rough idea of this magetonsider the
sets of variables only:

// train uses arc on its way to sonme hub
var bool travel sForth[Trains, Arcs];

/1 train uses arc on its way from sone hub
var bool travel sBack[Trains, Arcs];

/'l train goes between two hubs

var bool travel sBetween[Trains, Hubs, Hubs];
/1 train starts at node

var bool starts[Trains, Nodes];

/1 train ends at node

var bool ends[Trains, Nodes];

/1 tinme at which a train arrives at a station on its way to some hub
var departTinmes arrivesForth[Trains, Nodes];

/1 tine at which a train arrives at a station on its way fromsonme hub
var arriveTines arrivesBack[Trains, Nodes];

/1l time at which train z starts a hub hub ride

var betweenTi mes startsBetween[Trains];

/1 direct paths from Shipnents
var bool direct[Trains, Shipnents];

/1 second train depends on first for its front/back journey through h
var bool depFB[Trains, Trains, Hubs];

5.5. Model 1 67

/1 second train depends on first for Hub Hub journey through h
var bool depFH Trains, Trains, Hubs];
/1 second train depends on first for hub back journey through h

var bool depHB[Trains, Trai ns, Hubs];

/1 train takes shipnment and goes to hub

var bool takesForth[Trains, Shipnents, Hubs];

/1 train takes shipnent from hub

var bool takesBack[Trains, Shipnents, Hubs];

/1 train takes shipnment between hubs

var bool takesBetween[Trains, Shipnents, Hubs, Hubs];

In [122] Toth and Vigo discuss different formulations foetrelated but simpler
vehicle routing problem (VRP). In terms of their classifioatthe first sets of
variabled r avel sFort h[] toends can be seen as the variable set tir@e-
index vehicle flow formulatiofor the VRP. This model needs to be augmented
by variables for the time windowsepart Ti nmes to bet weenTi nes and by

a variabledi r ect that models direct trains for shipments (that do not go via
a hub). Until this point the model is a relatively “standardbdel. The main
complicating effect, which is not covered by standard foatians, comes from
the hubs: An outgoing train can only depart after its incapshipments have
arrived. This creates dependencies between incoming aigoiag trains that
we model by thelep variables. For these variables to be computable we also
need to know which train takes which shipments (note thatighnot implied by
thet r avel s variables as many trains can pass a station and pick up shipme
there. We first ran the model on the sparse network whichlenktes elementari-
ness of all routes as an unwanted side effect. It would hage pessible to find
also non-elementary routes by a transformation similahéoane given in Sec-
tion 5.5.3. By further complicating the model it would havsoebeen possible to
model the hub capacity constraints. However, we perforroggescomputational
experiments with this model, which made it seem unlikelyt thanodel of this
type could ever yield a result for our real instances. Wetertwo toy instances
on a graph with 14 nodes and 24 edges, one with four and ond vghipments.
On Machine B, see A.1, the small instance needed a quarter ledar to solve.
We ran the 11 shipments instance for more than 40 hours amibtligven get a
feasible solution.

5.5 Model 1

The computational experience with Model 0 and similar msdebtivated us to
decompose GTOP into a routing part and a scheduling paft,afachich should
be solvable in reasonable time. Moreover, Model 1 is fortealdor a single hub

68 Chapter 5. Optimizing a Hub and Spoke Railway System

because at the time when it was developed the SBB Cargo Expedsork had
a single hub only. In the following we explain the decomposit

5.5.1 Routing

In the routing part we search for short routes from the statto the hub and vice
versa but do not compute the arrival and departure timeseofdttes. We treat
the transport from the stations to the hub and the transpart the hub to the
stations separately. Obviously, these two problems arerstnc, therefore it is
sufficient to analyze only one direction. Here we mainly édeisthe transport
from the stations to the hub. The decomposition entailstti@time windows
are ignored in the selection of routes. For this reason, we taguarantee in a
differentway that the routes do not get too long (even if #hedoad limit and the
objective function tend to keep routes short). To this engjntroduce a global
maximum trip distancé),,.x that limits the length of all routes. The model
implies that we do not use the whole information of the suppig demand
matrix M but rather the row and column totals (depending on the dinectn
this matrix. This is expressed by a supply (demand) valuestessociated with
each node. This value is the volume (in freight cars) that ksettransported from
the station to the hub, or vice versa. From this simplificatidone, the number
of shipments in the instance drops considerably. The fafigwefinition gives a
formalization of the problem.

Definition 5.2 (Train Routing Problem with fixed train fleet (T RP)) Assume
we are given a networli TRP = (V, E, £, ¢), a specified single hub nodec V/,
a set of shipments, a maximum train load.,.x, @ maximum trip distance
Diax, the average speed, the couple timel, . and the fleet sizd<. A
feasible solutioro = (R*, RY, p™, p¥) consists of two sets df routeseach,
the X-routesR* = {r{,...,r%} and theY-routes R¥ = {r{,r%},
i.e. graph-theoretic walks in the network having one endp@i /, and an
association of each shipmesnte S in the network with one routg”(s) in R”
and one route¥(s) in RY such that the following properties hold:

1. No route is longer that,,,... Thelengthof an X - router” is defined as
the length of the route plugv € V' | p®(v) = r}| - T pe- 0. The length
of aY route is defined accordingly.

2. No train is loaded more thah,,... Theloadof a train for an X -router®
IS 3. o= (5= VOI(s), and accordingly for & -route.

3. For each shipmentroute p* (s) visits sourcés).

5.5. Model 1 69

4. For each shipmentroute pY(s) visits dests).

The cost of a solution is the sum of the lengths of the rouths.tfRin routing
problem is to find a minimum cost solution.

The restriction to a fixed fleet sizE€ is not very limiting. In practice, one
wants to minimize a weighted sum of the number of used traidgsfze traveled
distance. Reasonable values for the number of used transsaally in a very
small interval so that the optimization can be done for athefe values. Finally,
it is also possible to choose different fleet sizes forxheand theY -routes.

5.5.2 Scheduling

For the scheduling problem we assume that we are already @giv&olution
(R*,RY, p*, p¥) to TRP. For the routes ifk* and RY it remains to specify the
exact arrival and departure times at the station that réspetime windows, the
hub shunting time, and also keep the hub-capacity low. If fae choose the
hub capacity as the objective function. A complete schedoiidains the depar-
ture and arrival times of each train at each station. Howévsmot necessary to
specify a schedule in such detail: The arrival time and depatime windows
are one-sided in the sense that there is a priori no latestrep time or an ear-
liest arrival time for the shipments; for that reason it dnesmake sense for a
train to slow down on the tracks or to wait before a stationl itnis “possible”
to enter it. Therefore, we can completely specify a schelolylgving the arrival
and departure times of the trains at the hub and assumegathat the engines
arrive there and start from there traveling the route in tefipossible way, i.e.,
going at speed and only waiting the required couple tini¢, . at the stations
where they pick-up or deliver shipments.

Definition 5.3 (Train Shunting and Scheduling Problem (TSS)) Let a solu-
tion (R, RY, p”, p¥) to TRP for a sefS of shipments be given. A feasible solu-
tion to TSSP defines for each € R” an arrival time at the hub arrivg(+*) and
for eachr? € RY a departure time at the hub dgfp-¥) such that

o the (inferred) arrival and departure times at the statioespect the time
windows.

e an outgoing trainT only departs after all incoming trains carrying cars
for 7 have arrived and have been shunted:

Vr* e R*VrY e RY Vs e S :
pr(s) =" A p¥(s) =1 = dep (r¥) > arrive; (r*) + Tl (5.5.1)

70 Chapter 5. Optimizing a Hub and Spoke Railway System

The cost of a solutioa equals the maximum number of cars that are in the hub
at the same time:

cos{o) = ,Jmax Z vol(s) . (5.5.2)

s:arrive;, (p®(s)) <t Adep, (p¥(s))>t

where EVENTS= {t' ¢ R | 37" € R* : arrive; (r*) = t' vV Ir¥ € RY :
dep,(r¥) = t'}. An optimal solution to TSSP is one with minimum cost.

We will consider the theoretical and practical aspectsisfsbheduling prob-
lem later in Section 5.7. In the following we focus on a braaold cut solution
approach to the TRP.

To sum up, the above decomposition of GTOP into the sequesttiation
of TRP and TSSP allowed us to produce solutions to a real viostdnce with
one hub as documented in the experimental Section 5.8. @baéso that the
sequential approach might find no feasible solution for GTeén if there is
one, because the optimal solution to TRP can be an infedsstknce to TSSP.
We also address this problem in the experimental section.

The TRP can also be seen as a problem in its own right: It is silden
variation of a vehicle routing type problem. In the next s@cttve will illuminate
the connections to classical vehicle routing problems.

5.5.3 Branch and Cut Approach

In general, there are many different possibilities to ta@kproblem like the train
routing problem, even after one has decided to use an expuiagh like branch
and cut. Out of these possibilities we could only evaluatmallssubset. Natural
candidates are those based on formulations that proveessfat for related
vehicle routing problems, i.evehicle flonmodels with the classical two- or three
index formulationscommaodity flonmodels orset partitionmodels, see [122]
for an excellent overview. After some preliminary expemtsewith such ILP
models for TRP we decided to use a two-index formulation. drtipular, we
based our implementation on an existing VRP package for ¢écie routing
problem that is based on the two index formulation. We exenitlsuch that
it can solve our problem. In the following we discuss theatise constrained
capacitated vehicle routing problem and its connectionrR®.T

Definition 5.4 (Distance Constrained Vehicle Routing Prol#m (DCVRP))
The input consists of a netwotkPVRP = (V E ¢, ¢), a specified hub node
h € V, furthermore demands;,7 € V' on the nodes, a maximum load (or

5.5. Model 1 71

capacity)LPCVRP and a maximum distand@2CVRP. All edges are present in the

max max

network/V.

Find K elementary circuits with minimum total cost, such that thifving
properties hold.

1. Each circuit visits the hub node
2. Each customer node is visited by exactly one circuit.

3. The sum of the demands on each circuit does not exceed |dveedl
load LDCVRP

max

4. The length of each circuit does not excegifVRP.

The cost of a path equals the sum of the edge costs.

DCVRP ILP-Formulation

The two index formulation of the DCVRP uses Boolean variableto indicate
if a given edgee € E is chosen. We give it for complete undirected graphs,
following [123] and explain it below.

DCVRP: min Zceme

eckE
st > =2 VieV\ {h} (5.5.3a)
e={i,j}€E
> = 2K (5.5.3b)
e={h,j}€E

> > 2r(Q) VQ cV\{h},Q#0 (5.5.3c)
e={i,j}€E,i€Q,j¢Q
z. € {0,1} Vee E (5.5.3d)

Equations (5.5.3a) enforce that each node except for thehhaldegree two,
(5.5.3b) enforces that the hub has dedr&e

Equations (5.5.3c), theapacity cut constraintare the most interesting con-
straints. They play a similar role for the VRP as the subtdumieation con-
straints do for the TSP [87]. The left hand side, evaluateal stlution vector,
gives the number of edges in that solution that cross the@ut” \ @]. Note
that every vehicle that serves customersgircontributes two to the number of

72 Chapter 5. Optimizing a Hub and Spoke Railway System

edges of the cut. The right hand side should therefore reptése minimum
number of necessary crossings of vehicles due to the canitgcequirement,
capacity reasons, and the distance constraints. The v@jecan be understood
as the maximum of two valued{@), which accounts for the maximum distance
constraints; and\(Q), which accounts for the capacity constraints (and also for
the connectivity constraints).

There are several valid but not equivalent choices for a itiefirof d(Q) and
A(Q). In fact, there is a whole hierarchy of possible valuesX@®p) that lead
to different families of valid inequalities with nondecsérzg right-hand side, so
that the higher families of inequalities dominate (see Didim 4.22) the lower
families but also lead to increasingly difficult separatpoblems. The simplest

choice isA\(Q) = Z}f‘;’ v which leads to a separation problem for which there

is a polynomial time algorlthm but still gives (together ki valid choice for
d(Q)) a valid formulation for DCVRP, see [16, 10]. The generdfiedtional

capacity inequalitiesare in general not supporting for the DCVRP-polytope.

As all solutions have integrat. values it is obviously admissible to choose

AMQ) = [Zzeiiﬂ which gives theounded capacity inequalitidhat dominate

the simple capacity inequalities. However, the associs¢garation problem is
N P-complete [96], which also implies that even computing tierkelaxation of

a classical VRP with rounded capacity inequalities is anddmyplete problem.
An even tighter formulation could be obtained by solving #ssociated bin-
packing problem. But even this approach does not necessai to supporting
inequalities, see [96] for a more detailed discussion.

The valued(Q) is the minimum valué: € N such that the objective value
vsp Of @ k-TSP problem or divided by DPCYRP and rounded up equals
see [123]:

d(Q) = min {k € N‘k > V TSP(Q)W } . (5.5.4)

DDCVRP

max

Adapting the Model

Although not identical, the train routing problem bears gamilarities to
DCVRP. In the following, we give a transformation such tha# bptimal so-
lution of any TRP instancé;rp can be derived from the optimal solution of the
corresponding transformed DCVRP instanie@rp). This approach allows us
to use existing software packages extended with code falititi@nce constraints.

An optimal solution to an instandgrp of TRP consists of two independent
parts(R”, p”) and(RY, p¥). In the following we describe w.l.0.g. how to trans-
form Itrp in order to obtainR*, p*). Roughly the task of the transformation

5.5. Model 1 73

is to do the following: Translate a problem defined on a spgraph for which
the solution consists of a set of circuits covering the neltwo a problem on
the complete graph for which the solution consists of a seiatlis covering the
network. Moreover, we have to correctly translate the leragtd capacity con-
straints. Note that the common transformaiigy;; «— cy; ;3 — Clhyiy ~ Clhni)
by Clarke and Wright savings [31] only works in the other diien, in the sense
that it transforms a problem with circuits into a problemiwiaths.

The transformatio applies the following types of modifications to instance
Itrp to achieve the above goals:

1. Add all missing edges t TRP. The length of such a new edge= (u, v)
is set to the length of the shortestv path in N TR,

2. Add T, 56 v to the weight of each edge of the network.

3. (optional) Partly merge shipments with identical souhe will definitely
be transported by the same train.

4. Replace stations with shipments,; > 1, by a j-clique with zero cost
and length edges. Identify each shipment with this sourtle ane of the
nodes of the clique by setting tlak values of the clique nodes to the vol
values of these shipments.

5. Put a gadget on top of the network as explained below.

After Step 4 there is a specifghipment nodéor each shipment. Figure 5.5.1
shows how the TRP-instance after the first three modificatiogpresented by
the circular nodes is transformed into a DCVRP instance lolyradextra nodes
and edges. The extra nodes are shown as rectangular no@asndérlying idea

of the gadget s to allow each vehicle to “jump” from the hulattart node in the
network. To that purposéy extra nodeguy, ..., v } are added to the network.
These nodes are all connected to the hukith edges of length and costM,
with M > " . c.. The extra nodes are connected to the rest of the network
via the complete bipartite graph. The length of each sucle &dgero. The extra
nodes are not interconnected. Each extra node has an dsdatémand oft/’,
with M’ > > __ ¢ vol(s). Moreover, we set the load limit2$YR" of the vehicles

in the DCVRP instance t8/’ + L., and finally we seDPSYRP = D .. — M.

The idea behind the M edges is to force them into the solution. The shipment
of very high weights on the incident extra nodes enforces ¢haah train can
visit at most one of these extra nodes. Together these twdficattbns enforce
that each route “jumps” exactly once to its starting node goels back to the

74 Chapter 5. Optimizing a Hub and Spoke Railway System

Figure 5.5.1: Transformation from TRP to DCVRP for two trains. The oridina
graph consists of all circular nodes together with the sdildck edges. First
the green dotted edges are introduced to make the graph edenfdlhen all edge
length are increased WY, v and nodes with multiple shipments are expanded
to cliques (not shown). Then the two new red square nodesieittand\/’ are
added and connected via the (red) edges of length to the hub. The blue edges
have length zero and make possible a “jump” to the startingenof a route.

5.5. Model 1 75

hub node from there. The correctness of transformatias established in the
following lemma.

Lemma 5.5 Leta TRP instancérrpbe given. Letpcyrpbe an optimal solution
to the DCVRP instanc@ (Itrp) Of coste. Then, theX-part 0¥z = (R?, p*) of
the optimal TRP solution has cost+ K - M and can be reconstructed from
opcvrpin linear time. The same statement holds for Yheart of the solution.

Proof. We first argue thatpcyrp has the following form: It consists df cycles,
such that the-th cycle can be written a§; = (h, v, Vijrs e oo Vi, » h). The
reason for this is that the supply @f’ of each extra node together with the
capacity constraints enforce that exactly one extra ngde on each circuit’;.

The negative lengths of the edggs v¢) enforce that the extra nodes must be
directly after (or before}, on the circuits because one such negative cost edge is

taken per circuit.
To construct the-th route oforrp We first setp™(s) = ¢ for all shipments

in C;. Then we set thé-th route to(v; j, , . .. ,vi,jli,i}), replacing nodes that
arose from an expansion to &tlique by the original station node and deleting
consecutive occurrences of a node. We then reconstructrihi@a paths by
replacing edges that do not existM"RP by the shortest path itV TRP between

the two end nodes.

From the description of the transformation it follows thia¢ feasibility of
opcvrp guarantees thatrzp is feasible w.r.t.L,,x andDy,.x and the covering of
the shipments. Note that we assume a couple time also attienstwhere trains
start their journey. As for the optimality, assumg is not an optimal solution.
Then letS’ be the X-part of the optimal solution to the TRP consisting If
routes. This solution can be transformed iocycles by reverting the above
construction. It is straight-forward to check that theseley form a cheaper
feasible solution for the DCVRP instance. O

Note that the bipartite component of the gadget can be slindosvn: All
we need is that there is a perfect matching between eachtsgbsel” of size
K and the extra nodes. Thus, for a subsekohodes inN, it is sufficient to
insert only the edge&;, v$),i € {1,..., K} in the bipartite component. Also
the extra edges that are introduced to make the graph cangdet be partly
removed: Each edge between two shipment nodes, for whighi¢keip of both
would already lead to a violation of the capacity or the distaconstraint need
not be introduced.

76 Chapter 5. Optimizing a Hub and Spoke Railway System

Separation Heuristics

The core part of every branch and cut algorithm is the desfgm geparation
algorithm that effectively separates a given fractionahpfsom the convex hull
of integer solutions. The general separation problem icbifaplete and this still
holds for most known classes of valid inequalities inclgrtime rounded capacity
inequalities. For this reason, we focus on effectieparation heuristicthat try
to find violated inequalities of Type (5.5.3c) but do not qargee to find one if
one exists. As the cutting plane generation is embeddedibhtanch and bound
framework, this does not compromise the correctness of lgmithm. These
inequalities comprise two subtypes, capacity and distannstraints.

We have based our implementation on the branch and cut coRalpys et
al. [107] for the vehicle routing problem. This has the adage that we could
use the already implemented separation heuristics fordpadity constraints.
Ralphs et al. report that most classes of valid inequalitieghe vehicle routing
problem that have been explored in the literature althobgbretically interest-
ing prove to be either ineffective or very difficult to compum practice. There-
fore, they focus on rather simple separation heuristictf®icapacity constraint,
see [107] for a more detailed description. The capacitytraimgs being handled
by the existing code we focus on the new distance constrmintar separation
heuristics.

As we are only interested in instances that arise from afwamstion), we
describe how to find the cuts in the grap = (V3, E5) which is the original
network of the TRP-instance after the fourth step of thesi@mation, i.e., be-
fore the gadget is added. In this graph an integral solutamsists of a set of
paths that start from the hub nofle Given a fractional solutiot we consider
the support graphNs = (Vs, F3), B3 = {e € E3 | &, > 0}. If we temporarily
remove the hub nodea support graph decomposes into a set of connected com-
ponents(Q1,...,Qw }, k' < K. We define thdength/(Q) of such a connected
component to be the sum of the lengths of the edgeg in {i} weighted by
Z. Furthermore, we define ttengine numbee(Q) of @ to be the number of
engines that entep in Ns. The value:(Q) is defined ags] + 1, wherecis the

value of the (weighted, graph theoretj€), {1}]-cut in Ns.

If for a connected componei@ the value/(Q)/e(Q) exceedsDRSVRP —
M = Dpnax, We introduce a valid inequality of Type (5.5.3c) f@. Setting
AMQ) toe(Q)+1 gives alocally valid cut. Next, we apply the shrinking hstio
described in [107] to enforce stronger cuts if the previaea sh was unsuccess-
ful. All these cuts have only local validity in the brancheacout search tree,

because& depends on the branching decisions that enforce or forligk smlges.

5.5. Model 1 77

For integral solutions we make more efforts to come up witts.cuf the
length of a path in such a solution excedds.., we introduce a cut with right-
hand-side2x(Q). The valuex(Q) is a global lower bound on the number of
vehicles needed to ser¢g, and is explained below. We try to enforce stronger
cuts by considering only parts of each path: we sequentatyedges along a
path until the distance-constraint is violated, and erd@aut on this smaller
subset of nodes. Next, we shorten the path from its sourdea@aha cut for each
subset violating the distance constraint. This proceduiteiated by adding one
edge to the previous prefix of the path. As before, these ags(4)) as lower
bound on the number of vehicles. Note that if the right hadd sif the cut does
not change after a shrinking step the new cut dominates thera in the sense
of Definition 4.22.

The valuex(Q) is computed independently af by adapting two standard
relaxations of the TSP to our needs, the relaxation to Istaeel the one to the
assignment problem. For a node §gtwe compute the minimum weight span-
ning tree o). If the cost of the spanning tree excedds.., the set of nodes of
that component represents a cut. In order to find the besity®$swer bound
on \(Q), we proceed as follows. Lé{ be the weight of the tree, = 1. As long
asﬁ > A, we increase\ by one, decreasér by the weight of the heaviest
edge in the tree and increase it by the weight of the cheapégenconsidered
edge fromQ to the hub nodé. The idea is to subdivide the component in many
components, each served by one vehicle. The updated valtie pfovides a
lower bound on the length of the route needed to serve theseomponents.
Hence, the final value of is a global lower bound on the number of vehicles
needed to serve the nodegjn

If this procedure does not lead d0> 1, we apply a second heuristic based
on the TSP-relaxation to the assignment problem, see [8&]bWild a bipartite
graph as follows: Each partitioA and B consists of the nodes if§. For every
original edg€u, v) we introduce two edg€s. 4, vg) and(ug, va) of costey,, .,y -
Furthermore, we introduce one new node for each partitibins fode represents
the hub node. We connect the hub node of partitioto all nodes inB except
for the hub node with edges of weight as in the original graphese edges
represent the trip from the last node to the hub. Similarky,c@nnect the hub
node of partitionB to all nodes inA (excluding the hub) with edges of weight
zero. These edges represent a zero cost edge from the haxstathof the path.
The weight of the minimum weight bipartite matching is a loweund on the
length of the minimum path needed to serve the nodés iHence, if the weight
of the bipartite matching exceedy,, ., at least two vehicles are needed to serve
the nodes inR). In our implementation we use the LEDA assignment algorithm
[92]. The valuex(Q) results from the best result of the two relaxations.

78 Chapter 5. Optimizing a Hub and Spoke Railway System

To sum up, the transformation together with the additional cuts presented
in this section allowed us to use standard vehicle routirftyveme to produce
solutions to the TRP problem. The results are presentedeirexiperimental
Section 5.8. We present our solution approach to the TSSBigmolater in
Section 5.7.

5.6 Model 2

Model 1 has some limitations: First of all, the decompositpproach implies
that the solution process for the TRP is blind to the constsadf the TSSP so
that the overall solution can perform badly w.r.t. the “sedary” optimization

criterion, the hub-capacity. For the same reason, the apprioas problems with
tight time windows for which many of the TRP solutions wildince infeasible
instances for TSSP. A further problem with Model 1 is thasihot designed to
handle multiple hubs and trains that go between hubs.

Because of the above reasons we decided to tackle the gersnabpti-
mization problem from a different angle by using a columnegation approach
that naturally decomposes the problem into a master ancce@mroblem (as
discussed in Section 4.7). The work on this column generapproach is not
entirely finished at the time of writing this thesis, but wegaesent some pre-
liminary results.

5.6.1 Master Problem

For the presentation of the decomposition approach we gntpk terminol-
ogy introduced in Section 4.7. The master problem can be dtatad directly
(instead of obtaining it from a Danzig Wolfe decompositiooni a compact for-
mulation). We associate variables with routes. Informallyouter is a walk in
the railway network to or from a hub, for which we specify wiighipments it
takes and when it reaches the nodes of the walk. The routesngider must be
feasible in the sense that the arrival and departure timdseattations are con-
sistent with the track length, the couple time and the avesgged; the arrival
times at pick up/delivery nodes respect the time window$efshipments; and
finally the maximum train load is respected. For a shipmestd a route- we
write s € r if r picks up or delivers. The costc, of any route is defined as
the sum of the cost of the edges in it and a contributio6dgjine as explained
below. The volume vdF) is the total volume of shipments picked up (or deliv-
ered): vo[r) = > ., vol(s). We denote by stafit) and endr) the start and end
node ofr. We give a more formal definition of a route later in the pricgection.

5.6. Model 2 79

For the description of the master problem the current naifanroute is precise
enough.

For the master problem, a route to the hub is encapsulateBaokan vari-
ablexl, wheret stands for the arrival time at the hub. We discretize timéat t
hub so that the number of these variables is finite. Léte the set of points in
time andt € T. Similarly, the Boolean variablg! encodes whether routeis
taken starting at timefrom the hub. We also allow paths between the hubs which
we represent as Boolean variablé€. Herer simply stands for the source and
destination hub and the set of shipments taken. Tistands for the departure
time at the source hub. Létbe the time it takes to travel between the hubs.
Then, for a variabléd* we write equivalently,2¢*9, i.e., we specify its arrival
time instead of its departure time. Following the policy &E5Cargo we do
not consider pick-ups or deliveries on hub paths. Finally,imiroduce for each
shipments € S Boolean variableg; that model the possibility of transport-
ing s directly with a dedicated engine from its source to its aedion. Such
a path is not associated to any time since it must always b&itpedo deliver
a shipment on the direct path respecting the time windowsrdthre, thel;-
variables guarantee that an initial reduced master protilatrcontains all such
ds variables is feasible. Abusing notation slightly, we denloy R the set of all
routes, irrespective of their type; furthermore, all surtiores are meant to be
over feasible routes separately for the summands. Thissrteaha sum of type
> rerier T + it is to be read as the sum of &fl-variables that correspond
to feasibleX -routes with arbitrary arrival time at any hub plus the sunalb® -
variables that correspond to feasibferoutes with arbitrary departure time from
any hub. All sums of this type in the constraints should benseea shorthand
notation for two separate sums.

The pickup and delivery time windows and the capacity camnstbeing han-
dled in the pricing subproblems, the master problem is aa&itipning model
that has to ensure that-routes and”-routes that depend on each other are time
consistent, that the capacity at the hub is not exceededhatdhte two com-
modities, engines and cars are used consistently. In casopan a “typical’-set
partitioning problem our master problem is quite compkcatWe use the fol-
lowing formulation for the master problem.

80 Chapter 5. Optimizing a Hub and Spoke Railway System

E el + eyl + crhg:t + E Csds
reR,teT sES

ds + Z :cﬁ > 1

teT,reR:ser

oo > 1

teT, reR:ser

>

teT,endr)=h,ser

-

teT,star(r)=h,ser

2

riser,endr)=h
t1>t

r:ser,star(r)=h
to>t+Th

shunt

riser,star(r)=h
t <t

riser,endr)=h

h
t2<t=Tghynt

E vol(r) 2t + vol(r) h2"
t1<t
endr)=h

— > vol(r)y +vol(r) l*> <
to<t
star(r)=h

D

reR.endr)=h
t'<t

reR,star(r)=h

’ h
t SltJrTshunt

ol oyl bt d, € {0,1}

d, +
xl + h2t
yl 4+ it =0

(Ghst) !+ B

yiz 4 ht2

IA
o

(Ghst) yat} + hg:tl

to aits
x,2 + h;

IN
o

(xtn)
cap,
a4+ pat

(Bht)

yr + by

vV
o

Vs e S

Vs e S

VseS,he H

VieT,he HseS

VteT ,he HseS

VteT,he H

VteT,he H

Vre RiteT,se S

5.6. Model 2 81

Let us discuss the model. To keep things simple, we refeetodhstraints by
the name of the associated dual variables. Fo®nstraints are the set covering
part of the model that state that each shipment has to becpigkand delivered.
We chose a set covering model instead of a set partitionindei{aith equality
constraints) because in this way the LPs tend to be easiette. &~urthermore,
ther dual variables are restricted in sign, which leads to areeasist structure
for the pricing problems. See [126] for a discussion of theaathges of set
covering over set partitioning models.

The ¢-constraints are global inflow-outflow constraints for thgpsents.
Together with ther-constraints they ensure the time consistent inflow-outfibw
shipments. Thé-constraints enforce that a shipment that arrives aftez tihas
a corresponding outgoing train after time 72 . The constraint is designed in
such a way that also for fractional routes of a shipmeggch fractional incoming
route has a corresponding fractional outgoing route. dHeenstraints represent
the symmetric statement for outgoing trains. In fact, treesestraints are nothing
else than a variation of the classig@neralized flow conservation constraints
for networks with intermediate storader flows over time problems, see for
example [69]. Out of the three types of constraiftsy, and ¢ every pair of
types implies the third type. Therefore, it suffices to imgithes- and theg-
constraints in the formulation.

The 3-constraints play a similar role for the engines asdbheonstraints do
for the shipments. Here, we allow that engines stay in the fliis can lead
to complications if we charge the engine costs uniformlyXte and Y -paths.
One way to solve this is to charge all engine costXtpaths and to connect an
artificial node with a zero-length track to the hub, from whall “superfluous”
engines can start.

The x-constraints limit the capacity for each hibe H to cap, cars in each
time slot.

There is one subtlety that we do not discuss here: Shipmetitawub as a
source or destination complicate the model. For this speaie, constraints of
typer, ¢, o andy have to be adapted. It is more or less straight-forward to do
this, but the modificatiotsmake the model unnecessarily hard to read. We do
however take care of these cases in our implementation.

INote that it does not suffice to connect extra stations by-tergth tracks to the hubs. Such a
construction would affect th@-constraints. In particular, we would potentially incue tengine costs
for the additional trips to the extra nodes.

82 Chapter 5. Optimizing a Hub and Spoke Railway System

5.6.2 Pricing

As discussed in Section 4.7, the pricing problem consistinding a feasible
route with negative reduced cost. From the above formulatis clear that we
have separate pricing problems for the different types ofabées. The easi-
est case are the direct paths: The reduced cost of a dirédcapadciated with
variabled;, is
C’engine‘f' Zce - (ﬁ-s + 7st) s (5.6.1)

eer
wherer is the route associated with the direct path for shipmems there are
only |S| direct paths it makes sense to include all of them in theahigduced
master problem and to keep them in the formulation. Thislhaside effect that
the initial RLPM is always feasible, just as all other RLPN&é keep the direct
paths variables in the formulation.

More interesting are th& - andY -routes. The reduced cost of ahrouter
to hubh' at timet’ is

C’engineJF Zce - Z(ﬁs + ¢sh’) - Z Oh'st

eer ser sert<t’/
[+ D wa] Vo) Y xaw = Y B (562)
SEEt+Th >t =t
where
frs, Ts, ﬂht >0 andXth, 6—hsta Ohst <0 andgbsh cR . (563)

This cost structure has the attractive property that fodfik@ndh’ all costs
are either constants or can be charged to edges in the netwitwkhe pick-up
of shipments. This motivates the definition of the followjrgblem.

Definition 5.6 (X -pricing) Given a networkV, a hubh’ € H, an arrival time
t', parametersiimax, Teoupie ¥, @ Set of shipments, and areduced costc(s)
for each shipmen¢ € S. Find a minimum cost walk in N from hubh’ to an
arbitrary node and a set of shipmerfis C S, such that

1. forall s € S, sourcés) € w,
2. ZSGST, VOl(S) < Lmax,

3. t' —time, (h/, sourcés)) > departs(s), where timg, (h/, sourcés)) de-
notes the time it takes an engine to go on the tracks from &’ to the first

occurrence of sourde) according to the parameters ¢, and 7, e

5.6. Model 2 83

The cost of a walk is the sum©@§ngine the edge costs af and the reduced costs
of the shipments ii§,..

A router is now more precisely defined as such a pairS,). This problem can
be understood as a variation of a resource constrainedeshpeth problem with
time windows. It is non-elementary in the sense that nodeseavisited more
than once but it is elementary in the sense that shipmentbeaicked up only
once. Also note that even though the edge costs are nornveegéite reduced
costs of the shipments can be negative. Therefore, thegaroisl NP-complete
even without the load limit and the time windows by an easyiegidn from the

shortest (elementary) path problem without nonnegatigsyriction: It suffices
to replace each negative cost edge by a cost zero path d¢ogsittwo edges
such that the new node in the middle gets a single shipmentetifuced cost of
which equals the length of the edge in the shortest path @nobl

We propose to solve th& -pricing problem by a particular label correct-
ing shortest path algorithm augmented with some extra iin&tion to guaran-
tee shipment elementariness. We do not give the detailseoéltorithm here
because it is a relatively straight-forward extension astixg label correcting
algorithms. The main framework is similar to the ones in [37]. The main
design decision is to store the following information in el reduced cost,
primal cost, time, capacity and the shipments that have pe&ad up.

Asillustrated in [17, 57], the most important ingredierdsédn efficient label
correcting algorithm are efficiemtominance rules In short, a dominance rule
gives criteria as to when a given label dominates a label, in the sense that
A2 can be removed from the current list of active labels bectarseny feasible
solution that arises from\, there is a corresponding feasible solution arising
from \; that has an objective value that is at least as good. We dese@keveral
dominance rules that take into consideration the capaoitgtcaint, the current
objective value and the time windows. It is also possiblegwatbp dominance
rules for complete time slots. A simple such rule is as foloicet hubh’ be
fixed. If to > t; and for alls € S it holds thatZtStQ Onrst > Ztﬁl Ohsts 1€,
Dot i<t st = 0andy>, o, Bt = 0 we know that the complete time
slot ¢, is dominated by in the sense that an optimal solution fgercannot be
worse than an optimal solution for.

In our implementation we solve one pricing problem for eaah pf hub and
point in time. A more involved approach could solve the pricproblem for
all time slots in one application of a label-correcting altion. In that case one
could also apply dominance rules for labels from differéngtslots.

84 Chapter 5. Optimizing a Hub and Spoke Railway System

The reduced cost of B-router from hubh’ at timet’ is:

Z Ce — Z ¢sh’ Z &h’st

eer ser 1 _h
sert<t Tshunt

|:+ Z 6/1/5tj| + VOI Z Xth' + Z ﬁh,’t (564)

1>t >t '_Th
sentz 2t =T nt

The Y-pricing problem is completely symmetric to té-pricing problem.
Therefore, we do not discuss it here.

The reduced cost of af-router from hubh’ to hubh” with departure time
t’ and arrival timet” is

Cos(hlv h”) + Z(¢sh,’ - ¢sh,”) - Z &Iz,”st + Z &iz,’st

€ t<t" .Cr /_h
ser sert< ser,t<t Tshunt
|:* E Oh'st + § 6h”sti|
>t 1nyh
=z sert>t +Tshunt
- VOI E Xth' -+ VOI E Xth'
t>t" t>t
- § ﬁh”t + E ﬁh,’t .
t>t" t>t—

shunt

(5.6.5)

Here costh/, k') denotes the fixed cost for the trip between the hubendh”.
Also for the H-route it holds that all reduced costs are either constanfisedt’,
1’, andh’ or can be charged to the pick-up of shipments. As the wallutjinehe
graph for anH -route is always the direct connection between the two ireal
hubs, theH -pricing problem simplifies to a (comparatively) simple ksack
problem. To solve it we use the algorithm (and the code) bn&és [102], which
we adapt to handle fractional profits as described in CemadliRighini [23].

5.6.3 Acceleration Techniques

The literature on Column Generation abounds with techrsqo@ccelerate CG-
algorithms. It seems that the number of acceleration tegles that one can
apply to a single problem is limited more by the willingnessmplement, test,
and evaluate them than by the number of different such tgdlesi In [45] De-
saulniers, Desrosiers and Solomon propose a whole catatifgachniques that

5.6. Model 2 85

have proved helpful in various applications. Similar to $hde of their paper we
briefly discuss the techniques that we use.

Pre-Processing Strategies. As already mentioned aboveynaensed the orig-
inal SBB-Cargo network to a smaller network: To this end, wat fialcu-
late the all-pairs shortest path among the nodes with shifsrend the
hubs. Edges that do not occur on any such shortest path caafddg s
ignored. In the resulting graph we contract degree-two sdfdthey are
neither a hub nor a source nor a destination of any shipment.

Aggregation. A commonly used technique for routing protdesrto aggregate
demands. This technique is of limited use in our case, becthese are
no shipments with identical source and destination. It isdw@r possible
to aggregate shipments with identical source only in ¥hricing and
shipments with identical destination only in tiiepricing. This leads to a
moderate speed-up of the pricing steps.

Heuristic Pricing. As explained in Section 4.7 it sufficesttoe correctness of
the algorithm that the pricing problem returns any columthwiegative
reduced cost if there is one. For this reason, it is beneficialse pric-
ing heuristics or to stop a pricing calculation prematuiesycolumn with
negative reduced cost has already been found. We apply écthigues
by managing &olumn poolhat contains candidates for negative reduced
cost columns. Before the pricers are called the column godiécked for
negative reduced cost columns. Additionally, we stop thell@orrecting
algorithm if a large enough set of negative reduced costaptuhas al-
ready been found.

Perturbation. For the calculation of the reduced mastdslpro we perturb the
right hand side of the-constraints by small random values. As predicted
in the literature [44] this leads to a significant speed-ughefLP-solving
steps.

Column Elimination. In order to keep the reduced master lprokat a rea-
sonable size we subject the columns to aging. If a columnskéemg
nonbasic for a given number of pricing iterations it is remd¥rom the
RLPM and added to the column pool. This technique gives adsppdor
a well-chosen threshold value. However, it trades off treegfthat it takes
to solve a single RLPM versus the number of iterations it $akesolve
the whole problem and can therefore even be detrimentaletsdhving
process.

86

Chapter 5. Optimizing a Hub and Spoke Railway System

Stabilization. A common problem in column generation it the dual vari-

ables oscillate and assume extreme values (if comparee tuthl values
at the optimal solution). This behavior can be partly expgdiby the prop-
erty of the simplex algorithm that it finds an extreme pointhe optimal
face. Different schemes to remedy this problem have beerdated. We
experimented with the one by Rousseau, Gendreau and Haill@}f that
sets up a sequence of linear programs with random objeativetibn to
find an interior point of the optimal face. Our preliminarypexience with
this approach is that it indeed stabilizes the dual valudglaat the objec-
tive value seems to converge faster. Unfortunately, thitebeonvergence
comes at the cost of highly increased solution times for tbtnal lin-
ear programs that need to be solved.

5.6.4 Heuiristics

We experimented with a few heuristics. The currently mosteasful one is
a variation of the simplelive-and-fixheuristic [133, 110] augmented with col-
umn generation steps and some problem specific rules. Thistieiterates the
following steps until an integral solution has been found.

1.

6.

Select a candidate colummwith the highest fractional value such thas
time-consistent with the so far rounded up columns and raymnd

. Round down all columns in the RLPM that are not time-cdesiswithc.

. Stop the pricer for’s column type from generating columns that include

shipments of.

Resolve the restricted master problem with the new bousitg the dual
simplex algorithm.

Do several pricing and resolving iterations to include eelumns into the
RLPM.

If the solution is integral stop. Otherwise go back to Step

Additionally, after each fixing step we execute a local sedreuristic that
tries to complete the current partial integral solutiortvather fractional columns
from the RLPM (which it also shifts in time) and newly genechtolumns.

Our heuristic is unconventional if compared to other heiggsin column
generation settings that rely more on the compact formanaiir metaheuristics
that are initialized and guided by the column generatiorcgss, see [41]. In

5.6. Model 2 87

our case we have a master problem that is “unusually comettan which a
feasible fractional solution already guarantees thatratitfonal X -routes have

a compatible counterpak¥f-route, i.e., the fractional solutions are already time
consistent and do not exceed the hub capacity. This properyd be lost if we
tried to build our own routes out of the information in a coroifarmulation.

On the other hand, a different problem arises that is usumltya topic in
Column Generation: By rounding up and down fractional reutean happen
that the RLPM becomes infeasible. In this case we apply antqak called
Farkas Pricing, which has not been applied in column geioerab far to the
best of our knowledge. It is introduced in the SCIP libraryAshterberg [3],
which we use in our implementation. We briefly explain it ie thext section.

5.6.5 Farkas Pricing

Consider a restricted linear programming master problegeireral form that is
infeasible.

min cx (RLPMger)
b<Ax <d
e<z<f

As in the proof of the Farkas’ Lemma 4.5 we can set the objedtinction to 0
and consider the dual linear program

max upb — uqd +ree — 1y f
upA — ugA + 7, — Ty =0

Up, Ugy Te, Tf = 0.

This linear program is feasible, which is certified by, w4, re,rf) = 0 and
must therefore be unbounded, as the primal problem is iitieasFrom the
complementary slackness conditions it is clear that ouheftévo bounds asso-
ciated with each constraint and each variable only one cambeero if these
are different. If they are the same, still only one needs todyezero. Therefore,
we can set = up — uq andr = r. — ry. Then we have the following set of
(in)equalities that certifies the primal infeasibility.

upb —ugd +ree —rsf >0
uA+r=0 .

88 Chapter 5. Optimizing a Hub and Spoke Railway System

As we have only a restricted linear programming master jgrakthis does not
imply that the underlying problem is infeasible. The aim aflkas pricing is to
add further variables such that the resulting RLPM is fdasigain. An addition
of a variable corresponds to the addition of a further columA. In our case
we have all the nonbasic variables at their lower bourd0 < f. Therefore, it
follows from complementary slackness that= 0 andr. > 0, so thatr > 0.
Suppose we find a new variable corresponding to a colupsuch that-ua; <

0. Then for the infeasibility certificate above to carry on weed thatr; =
—ua; < 0 which is a contradiction te; > 0 and thus destroys this infeasibility
certificate. This does not imply that the new RLPM is feasil8éll, it is clear
from the finiteness of the number of variables that this pdace must find a
primal feasible solution in a finite number of steps if theymal is indeed feasible.
To get a columm; with —ua; < 0 we call the same pricing algorithm as before
except that we set the objective function to 0. The resul&uyced cost8 — ua;
are exactly what is needed here. The SCIP library is desigmgach a way that
it automatically switches to Farkas pricing if an RLMP beasinfeasible.

5.6.6 Branching

One issue not discussed so far is the questiobrafhching rulesand selection
rules forbranching candidatesin column generation one often applies branch-
ing rules that substantially differ from branching rules &tassical branch and
bound. In the classical approach, one chooses a fracti@wéBn variable, fixes
it to one in the first subproblem and to zero in the second. &\fhilng a variable
to one can be sensible in a CG setting, fixing it to zero migbdiirproblems in
the pricing steps because it could be difficult to stop thegurirom regenerating
a rounded down column. Moreover, such a step is not very mganiwhen
most variables have values close to zero. Branching rulesolamn generation
usually compute from a fractional solution the values ofalales in a compact
formulation and branch on these. For example, we implendeatbranching
rule that first computes the fractional assignments of shisto the hubs (the
resulting value can be seen as a variable of a compact fotionjaand then
branches on this fractional assignment. Finally, all brémg rules that are used
for column generation for the vehicle routing problem carubed in our set-
ting, see [37, 75] for details. As with our current implensign the solution of
the root node of the branch and price tree takes a long timenledid a few
preliminary experiments with different branching rulesstead, we focussed on
obtaining integral solutions already in the root node. Oyregimental findings
with Model 2 are summarized in Section 5.8.

5.7. Shunting and Scheduling 89

5.7 Shunting and Scheduling

In this section we take a closer look at the shunting and sdhmepproblems that
arise in our problem context: the TSSP, a simplified varidrit and finally a
problem connected to the optimization of the precise secpiehshunting oper-
ations in the shunting yard. The simplified version of TSS® loa formulated
as follows. Given a solution to the TRP problem as sets ofriting and out-
going trains, decide in which sequence the trains shoulccbedsled to arrive
and depart, such that the capacity of the shunting-yarcediub is not exceeded.
This means that we consider the sequencing variation of T88Fshow that
this problem is NP-complete, even in a very restricted rsgttirhen we discuss
how to solve the TSSP problem by an ILP-formulation. Finailg consider the
problem of optimally grouping the shunting operations ia ghunting yard.

5.7.1 Hardness of Directed Minimum Cut Linear Arrange-
ment

The sequencing problem for incoming and outgoing trainssaut to be NP-
hard, already in a very simple version.

Corollary 5.7 (of Theorem 5.9) Itis NP-hard to decide if a collection of incom-
ing and outgoing trains can be sequenced such that the cgpafcihe shunting
yard is sufficient, even if every incoming train consistsretjsely 3 cars, and
every outgoing train of precisely 2 cars.

Given the composition of the incoming traif® = {r{,...,r% } and the
outgoing trainskR¥ = {r{,...,r¥}, the sequencing task at hand can be depicted
by the bipartite grapltsi, = (U U V, E) in Figure 5.7.1(a), thén-out graph
The incoming trains correspond to nodeg/inthe outgoing trains to nodes in.
Each edge = (r{,rY) has avolumevol(e) that corresponds to the number of
cars that traim/ receives from trainf. Observe that this value is well-defined
as each shipment is picked-up and delivered by exactly aneas specified by
the p-functions in a TRP solution. We model precedence conssrandirected
edges, for every car from its arriving train to its departirain, expressing that a
car needs to arrive (with its train) before it can depart. \Ale@;, auniformly di-
rected bipartite graphbecause all edges are directed frono V. Alternatively
to the volume information on the edges we can also restrictadwes to in-out
graphs with unit weight edges and allow parallel edges toethibe volume.

The sequencing task corresponds to finditigear arrangemenof the graph
G, i.e., an embedding of the graph onto the horizontal linehdbat all edges

90 Chapter 5. Optimizing a Hub and Spoke Railway System

Ve
r{ outgoing trainsry %
(a) in-out graphG;, (b) the transformation of an undi-

rected edge to a pair of directed
edges to a new node

(c) a small “U-wall” of [90, 94]. The square nodes con-
nect to other square nodes of U-walls

Figure 5.7.1: lllustrations for Minimum Cut Linear Arrangement

5.7. Shunting and Scheduling 91

are directed from left to right. For such an arrangementntlagimal number
of edges crossing any vertical line is tfeut-) width and it corresponds to the
maximal number of cars residing in the shunting-yard. Thethvof a graph

is given by the minimal width of a linear arrangementafThis means that it is
not necessary to consider the extra shunting fitf{g,,here because it represents
a constant offset for the departure times that has no efie¢he sequencing
problem. Conversely, any uniformly directed bipartitegiracan be understood
as an in-out graph. Hence Corollary 5.7 follows indeed frdred@rem 5.9 below.

Let L: UUV — {1,...,n} be an optimal linear arrangement of the uni-
formly directed bipartite graptv = (U U V, E'). We can assume that inevery
outgoing train departs as early as possible that is, as salhits cars are avail-
able. Conversely, there is no use in scheduling an incoméig to arrive before
some of its cars are needed. Together this means that gigesetjuence of the
incoming trains it is easy to compute an optimal sequendeebtitgoing trains,
and vice versa.

Without the directions and the restriction to bipartitefrs, this problem is
known as the “minimum cut linear arrangement”, a well stddiP-complete
problem [62, GT44] that was shown to remain NP-hard for gsaphdegree 3
[90], and even planar graphs of degree 3 [94]. We extend tressdts in the
following way.

Lemma 5.8 For any constant: > 0 it is NP-hard to approximate minimum
cut linear arrangement with an additive error of even on planar graphs with
degree 3.

Proof. By reduction from the NP-hard problem “minimum cut linearaaige-
ment for planar graphs” [94]. We follow closely the reduatfaresented in [94].
Let G be a planar graph, antithe bound on its width. We construGt by tak-
ing a U-wall (see Figure 5.7.1(c)) of nodes with degree 3 f@rg node ofG.
G’ has the property that no two U-walls can significantly oveitaany linear
arrangement. (This idea goes back to [90].) The edgeS afe replaced by
edges inG’ connecting nodes of the inner parts of the two U-walls, theasg
nodes in Figure 5.7.1(c). As limit for the width of G’ we use the cut-width
of the U-walls (which equals their height) plus the bounagh the width ofG.
Now from any linear arrangement that obeys this lifitve can reconstruct an
arrangement of the original graghthat has widtt?. To extend the result in the
sense of the lemma, we “multiply” the construction by a factoi.e., we use
c-times bigger U-walls, and replace every original edge bgw edges. If there
is a linear arrangement of the original graph of widtthe constructed graph’
has widthcL. Conversely, even from an arrangement of the new graph dhwid

92 Chapter 5. Optimizing a Hub and Spoke Railway System

cL + ¢ — 1, we can reconstruct a linear arrangement because the \9-gtall
cannot overlap significantly, and this linear arrangemest\widthc? + ¢ — 1.
Because every original edge is represented pgrallel edges, every cut is di-
visible by ¢, and hence this linear arrangement actually has widthence the
original graphG' has width¢. O

Theorem 5.9 It is NP-hard to decide if a uniformly directed bipartite plar
graph of out-degree 3 and in-degree 2 admits a linear arranget of widtty.

Proof. By reduction from the problem of approximating the width gblanar
graph with an additive error of 7 of Lemma 5.8. l@&tbe the undirected planar
graph andL be the width limit defining an instance of that problem. Tlien
either has width< L or > L + 7, and it is NP-hard to distinguish these two
cases. We construct a grapt by replacing every edge with a pair of edges
directed toward a new node, see Figure 5.7.1(b). This gragH is also known
as the node-edge incidence graph with the links directed frodes to edges (or
vice-versa, this is just symmetric). We set the width lithit L + 6.

Any optimal linear arrangement 6¥ will place all the edge-nodes as far
left as possible, because not doing so can only increaseitith.wT'he nodes
of G are also nodes af’, such that the above observation allows us to directly
map arrangements ¢f to arrangements af’ and vice versa. Then directly to
the left of an original node, the width ofG’ is the same as the width 6f. Only
to the right of it, it is increased by twice the number of ndigts ofv in G that
are arranged left of. By constructiorw has at most 3 neighbors . For a
neighboru of v in G that is arranged left af, the directed edgg:, v.) continues
up tow,, and there is the additional edge v.).

Concluding we see that @ has width< L, thenG’ has a linear arrangement
of width < ¢ = L + 6, but if the width of G is > L 4+ 7 > ¢, thenG’ has width
>L+T7>1. O

This hardness result is complemented by the following cersition.

Theorem 5.10 Every uniformly directed bipartite graph with maximum deg @
admits a linear arrangement of width 4, and it takes lineardito determine the
minimal width of such a graph.

Proof. A graph of maximum degree 2 decomposes into cycles and péths.
single edge has width 1, two directed edges have width 2, taheet width 3,
and a cycle has width 4 (consider the last incoming trainddsa2 cars to a
shunting-yard containing two cars). O

5.7. Shunting and Scheduling 93

5.7.2 Solving the TSSP Problem in Practice

As the instances of the TSSP problem that arise in our sedti@got too large,
we can solve them by a simple ILP formulation.

For this formulation we discretize the time horizon intopoints in time
T = {0,...,7 — 1} and we make use of the in-out graph, as defined in
Section 5.7.1. We introduce Boolean variahlgsindd!, that model arrival (and
departure) of the trains € R* (' € RY, respectively) at timesc T'. Here, we
assume that the shunting tirfdg? ;is given in time slots. We refer t& as the
edge set of the in-out grapgh,.

min C
st al <af' WVreR"teT (5.7.1a)
d. < ditt Vre RV, teT (5.7.1b)
al > d?rTSﬁm’ vte{0,...,7 — Tsﬁun ,
V(r,”') € E (5.7.1c)
dt, =0 V' e RY,
vt e {0,...,TH ,—1} (5.7.1d)
> vol(e)(al. — dl) < C VteT (5.7.1e)
ecE
e=(rr")
ali =0 Vr e R“‘:arriveH(r)éti (5.7.1f)
dts — 1 Vi’ € RY:dep(r’)<t; (5.7.1g)
a=0, a"t=1 Vr € R*
&2 =0, d,;'=1 vr' € RY (5.7.1h)
alla.,d. € {0,1} (5.7.1i)

Equations (5.7.1a), (5.7.1b) and (5.7.1h) impose thatetery edge:, the
variablesa, andd, form a monotone sequence starting with 0 and ending with
1. The idea is that the train arrives (or departs, respdgjiaethe time when the
0-1 transition takes place, i.e, for &rrouter” € R” we set arrive (r*) = t/
if al.t1 — a. = 1 and symmetrically dep(r¥) = ¢ if d', "' — d', = 1fora
Y-routery € RY. Constraints (5.7.1c) and (5.7.1d) enforce that an outp@in
can only depart if all its cars have arrived and thigf,, time units are available
for shunting those cars. Constraints (5.7.1e) representapacity constraint

94 Chapter 5. Optimizing a Hub and Spoke Railway System

over all time slots, which is the objective value. Consti®({s.7.1f) and (5.7.19)
introduce time constraints for the earliest arrival / latsparture of trains, i.e.,
from the time windows we infer a constraint of type argiMe) > ¢’ on the
arrival (departure) times at the hub and express this indhm bf Constraints
(5.7.1f) and (5.7.19).

Our experiments show that for the problem instances thaé drom solu-
tions to the TRP on our instances, in a few minutes we can ledéca shunting
schedule for a given routing to and from the hub that minimites necessary
hub capacity and respects the time windows.

5.7.3 Optimal Grouping of Shunting Operations

In this section, we take a closer look at the shunting opematBeforehand we
assumed that it always takes a constant additional Tije, to compose an out-
going train, which is clearly a rough model that ignores thearete sequence of
shunting operations that is necessary to compose the trafact, it is an inter-
esting algorithmic problem to come up with methods that firgbad sequence
of these operations for a given shunting yard and a speddficaf incoming and
outgoing trains. Surprisingly, this task turned out to baegdifficult for various
reasonable models of what a good sequence precisely meaesnPortant rea-
son for that is that shunting yards differ in their layout amdhe way in which
they are operated.

In the literature the question of shunting is addressed iemagdublications
[72, 103, 39, 40]. From some discussions with practitioieran report that
these techniques are not used in reality. Apart from thelprokvith the different
layouts there is a further problem to the implementatiorhese methods: All
presented schemes assume that there is a given fleet of imgtnaiins that waits
in the shunting yard when shunting starts and that this féetet be shunted such
that the outgoing trains are composed in one shot. In realiynting starts well
before all incoming trains have arrived.

Here, we consider a simple model for this dynamic asggotjped shunting
in which we periodically decide to use one of the static simgmhethods to shunt
the outgoing trains for which all cars have arrived at thensing yard. This
results in a scheduling problem that is algorithmicallyenetsting. However, we
do not claim that this method is always the method of choicafieal shunting
yard.

The problem setting is as follows. We assume here that we alagady

found a good order for the trains to arrive at the shuntinglyaMore pre-
cisely, let us assume that we have computed all targetedabtimesZ =

5.7. Shunting and Scheduling 95

arri\le(zf) | ? Il arrive(fg)
TN AT
w1 Wy w3 W4 Ws we Wt

(a) time line with times of incoming and departing
trains

1 . r7

(b) Gt C Gijo represents a possible con-
figuration of cars in the shunting yard at
time ¢ (solid edges), cf. Fig. 5.7.1(a).

Figure 5.7.2: grouped shunting example

{arrive,(r1), ..., arrive,(r.,,)} of incoming trainsk?, for example by the meth-
ods of the last section. From this, we compute the earliessipte departure
timesO = {w,...,w,} of the outgoing traing¥ as follows. The earliest possi-

ble departure timey; of an outgoing train! is the latest arrival time arriygry)

of an incoming train-¢ that has cars for}: w; = MaX;i(re r¥)ep arrive, (rf)
with respect to the edge sét of the in-out graphGi,. Note that these earliest
possible departure times do not include the time neededhfartsg in contrast

to the actual departure time that are calculated by the ithgothat we present

in this section. It follows that the earliest possible départimes are a subset of
the arrival timesQ C 7), see Figure 5.7.2(a). The trains are indexed w.l.0.g. in

the order of their arrival times/earliest possible departimes.

At time ¢ all cars that are in the shunting yard correspond to a subdrap
of Gip, see Figure 5.7.2(b) for an example. If we start a shuntiraselat time
t, the set of all car®), in the shunting yard at time belonging to complete
outgoing trains are composed. In Figure 5.7.2(b) thelsetorresponds to all
nodes in the bottom partition that have all their adjacegesdnG,, i.e.,r? and
ry. The remaining cars are left in the shunting yard. We furdsmume that
the time needed for shuntin@, depends on the number of carsdh, denoted
by |O:|. We assume that the shunting time is given by a monotone,avenc
functionf : N — R™, wheref(n) is the time needed to shuntcars. Note that
the concavity just states that a static shunting task foressghof cars cannot take
longer than breaking this set up into subsets and sequgrgeiform the static

96 Chapter 5. Optimizing a Hub and Spoke Railway System

shunting on these subsets. This property trivially holdsdib sensible static
shunting methods. Given a shunting operation startingna tj the outgoing
trains are composed in the time interjialt + f(|O;|)], and during that time no
other shunting operation can take place.

Our task is to decide how to group the shunting operatioss, &t which
points in time we should start to shunt. Observe that the tesare in the
shunting yard at timé depend on the grouping decisions befarEor the objec-
tive of makespan minimizatiofC.,..) we call the problem theptimal grouping
problem with makespan objectiv8he makespan refers to the end of the last
shunting phase. We give a dynamic programming algorithnthigrproblem.

For eachw; € O, the algorithm maintains a stat® (w;) = (¢,v’) with
the following properties. Time’ is a point in time within the interval;, =
[wi,w;t+1) @andv’ represents the minimum number of cars waiting to be shunted
att’. Together, the paift’, v") represents partial solution until (interval);, that
is, a solution to the problem restricted to the intervalsaip, t which has ended
shunting before or at tim& and has/’ cars waiting to be shunted. The interval
for the last pointuy.x € O is defined adyax = [Wmax, 0). FOr convenience,
we writet = W'(w) andv = W"(w) for W(w) = (¢,v).

The key idea of the algorithm is that it suffices to store alsistate for each
interval. We express this by a dominance rule for two statéiseosame interval.
The statgt, v) dominatest’, ') if and only if ¢ + f(v) < t' + f(v').

The following lemma makes the usefulness of dominance ggeci

Lemma 5.11 (Dominance Rule)Consider a solutions with makesparCy,, .
which starts a shunting phase witlcars at timef of interval I;. Assume further
that a statg(t’, v'), ¢’ € I; exists that dominates, v). Then, a solutiow’ exists,
which starts shunting with’ cars at timet’ and has a makespan of less than or
equal toCy,,....
Proof. As (¢, v") dominategt, v), we can construct a solutieri as follows. The
existence oft’, v') guarantees that a partial solutiéruntil : exists. We builds”’

by usingP up tot’. At ¢’ we start a shunting phase that ends’at ¢’ + f(v’),
i.e., beforee = t + f(v), where the corresponding shunting phase iends
(by definition of dominance). If is the start of the last shunting phasesinve
already have a complete solution with a shorter makespdrer@ise, the rest of
the new solution consists of the grouping decisions at or aftere’. Let spext be
the start of the first shunting phase at or afterNote thatspext > ¢ > ¢’ since
(t',v") dominategt, v). At spexs, the solutions’” has exactly the same number of
cars waiting for shunting as has, since andt’ are in the same interval. The
cars available at.ex in o ando’ are just the weights of outgoing trains in the

5.7. Shunting and Scheduling 97

interval from(¢, spext) resp.[t’, snext). These two values are identical. a

A solutiono induces a set of states in the intervals in which it startseatts
shunting and in the intervals in which it waits. For the steyand ending phases
this is the exact time at which the shunting starts or endstbag with the number
of cars available for shunting at these times. A solutiohweits in an interval;
induces the statgv;, v), wherew is the number of cars available for shunting at
w;. We say that aolution dominates a statefst induces a state’ in the interval
of s that dominates. Similarly, we say that a solutiom dominates a solution
o' if o induces a state that dominates a state’of Because of Lemma 5.11,
it is sufficient to consider undominated solutions when agiag for an optimal
solution. We introduce the same notation for partial sohdiuntili, which only
induce states in intervalg, j <.

Note that dominance for the last interjal,.x, c0) is equivalent to a better
makespan. Therefore, an undominated solution is an optinel Furthermore,
an undominated partial solution can be extended to an undded optimal so-
lution by the same arguments as in Lemma 5.11.

The dynamic program proceeds as follows, see Algorithm Safprecise
formulation. First, we initialize prefix sumS(w) for each event point. These
sums stand for the cumulated number of cars of all outgoaiggrup to timew.
Then we iterate over the events chronologically and updeéit values. The
crucial observation is that shunting at time= W*(w) means that we keep the
shunting yard busy for at least= f(1W"(w)) time. Letw’ be the event point
directly beforet’ = ¢t + 0. To find this event,’, we need a dictionary o®
that supports predecessor queries. If we decide to startigtis phase at,
then there is a feasible solution with st&t& S(w’) — S(w)) in the interval of
w’. We use the dominance rule to find out if this state shouldaepthe current
state in the interval af’. In order to account for the possibility of not shunting
directly aftert’, we also have to update all states in intervals aftemwhich we
do implicitly in line 2 before accessing (w). After the last iteration, the values
W reflect an optimal solution. In order to find the minimum mades we need
to add one extra state after the last event. In this state leelate the finish time
after the additional shunting operation at the end, i.e. ntlakespan.

Theorem 5.12 Algorithm 5 solves the grouping problem with makespan ebjec
tive inO(nlogn) time.

Proof. We prove the correctness of the algorithm by the followingiant:

At the end of the-th iteration of the forall loop 1 the following two propess
hold:

98 Chapter 5. Optimizing a Hub and Spoke Railway System

Algorithm 5: Optimal grouping
[/ Initialize Prefix Sums (in linear time in the obvious way)
forall w € O do S(w) «— 7., <, vol(ry)
Il Initialize States -
W(w1) «— (w1, vol(r{))
Cmax —— 00, Vold 0
/I lterate
1 forall w € O in chronological orderdo
2 (t,v) «— W (w) «— DOMINANCE ((w, voiq + Vol(r¥)), W (w))
the—t+ f(v)
if ' < wmax then
w' «— PREDECESSOR’)

. W) DOMINANCE(W(w’L (' w+ S(w) — S(w)))

else
6 L Cmax «— min {Cmax7 t/ + f(S(Wmax> - S(w))}

L Uold < V
return Chuax

INV1 (i) Forall intervals;, with j < ¢ the state(t,v) = W(w;) is not domi-
nated by any partial solution until

INV2 (7) No undominated partial solution unti exists that dominateld” (wy,).
and starts its last shunting phase befareand ends this phase in interval
I, k> 1.

The correctness of the invariant implies the correctnessealgorithm be-
cause non-domination implies optimality.

We prove the invariants by induction an Fori = 0 there is nothing to
prove. Consider iteration > 0 and the corresponding statg v) = W (w;).
For INV1(¢) we have to seft,v) to a state that is not dominated. Such a state
corresponds to a specific partial solution uatilf that solution ends a shunting
phase inZ; thenW (w;) is already set correctly by IN3(i — 1). If this is not
the case, then this solution ends a shunting phase bé&fenmed waits in/;. In
this casgw;, W"(w;—1) + vol(r?)) is a non dominated state and it is assigned to
W (w;) in line 2. This makes use of the fact tH&t” (w;_1) is undominated until
i — 1 because of INY(i — 1). After line 2 the statdV (w) cannot be dominated
by another state and INN) holds.

Line 5 creates the state that corresponds to a start of aisgynftase in and
updates the interval in which the phase ends. After this tegpldN\V2 (i) holds:

5.8. Experiments 99

We have to check the property for all undominated partialtsmhs until% that
start a shunting phase i, for the othersiitis clear from IN¥i — 1). We know
from INV1(7) that in I; the statel¥’ (w;) cannot be dominated. Therefore, any
undominated solution that starts shuntingjrhas to end this shunting phase in
the interval ofw’, see Lines 4 and 5. This implies that we do the only necessary
update to preserve the second property.

We can use a balanced search tree for the predecessor quleitcesgyuaran-
tees a running time ad(nlogn). O

5.8 Experiments

In this section we report on the experimental results withttiree models.

5.8.1 Instance

The planners of SBB Cargo Express Service provided us withdata, i.e., the
actual railway network and an (averaged) supply and demaatdxrof a day
in Summer 2005. As already mentioned, the condensed netvas21 nodes
and 332 edges. In Figures 5.8.1 and 5.8.2 we show the orig@talork (green
edges, all nodes) together with the condensed network thaxivacted from it
(black edges, black and blue nodes). In total, there arendr®d00 shipments that
are transported almost every day. These data represenippé/sand demand
averages over the workdays of a week. However, within oné&kwtbe supply
and demand changes (slightly), that is, on a fixed day, naof éiese shipments
are really present. Note that one would expect that the gedranstance has
higher cost than the average weekday cost because the foomtains the union
of all shipments present in the weekdays.

In order to evaluate the quality of our solutions we evalddkte cost of the
current hand-made schedules in our model. These schedelésrdhe current
situation with a single hub. We are well aware that this dagsiacessarily equal
the exact real cost of such a solution. Both in our model anthfs evaluation we
set the cost of an engine to an estimative big-M-like valugGgfO in comparison
to the unit cost we charge for a driven kilometer. Note thaalsito medium
changes of this value cannot influence the structure of thienapsolution as
long as the distance that can be saved by employing an agaligagine is well
below this value. The resulting costs of the hand-made isoisitare shown in
Table 5.1.

100 Chapter 5. Optimizing a Hub and Spoke Railway System

201:THA

Figure 5.8.1: The original railway network together with the condensetivoek
that we extracted. The stations are given together withr t88B codes. Blue
nodes are stations with shipments in the Cargo Express&@etviack nodes are
stations without shipments that were retained in the coedémetwork to keep
it sparse. The red nodes correspond to hubs. The green nodksdyges are
stations that are not retained in the condensed network.

5.8. Experiments 101

Figure 5.8.2: An enlarged detail of the complete network of Figure 5.8.1.

Table 5.1: Estimated costs of the current hand-made schedules in odeimo
Monday | Tuesday| Wednesday| Thursday| Friday
48534 | 52086 51078 52086 | 52100

If we compare the size of our problem instance to the sizeefaigest VRP
instances that can be solved exactly as presented in a ltyiRR survey pa-
per [19] for the “easier” standard vehicle routing problétiurns out that the
SBB instance has more shipments than each of the instanessnped there.
Also, the underlying network has more nodes than each ofni$tances in this
publication except foE151- 12c. This emphasizes the fact that the SBB in-
stance is a challenging one, even more so as we try to solvettiag and the
scheduling problem together. We do not expect however tcafinekact solution
for our instance.

5.8.2 Model 0

As already mentioned above we implemented Model 0 using ®le @odeling

language [71]. The model can be found in Appendix A.2. On aitsyance
with 14 nodes, 24 edges and 11 shipments we did not get anpleaslution

on Machine B (see Appendix A.1) in 40 hours. This result carséen as a
justification to develop and implement more involved apphes like Model 1
and 2.

102 Chapter 5. Optimizing a Hub and Spoke Railway System

Table 5.2: Parameter settings for Model 1
Lmax D max TsIr{u nt Tc%uple v
25 cars| 288km | 15min | 8min | 90 km/h

5.8.3 Model 1

We implemented Model 1 using SYMPHONY 5, a branch and cut é&waork
by Ralphs et al. [106]. We used CPLEX 9 as LP solver for SYMPHO&hd
LEDA 4.5 for computing the minimum spanning trees and th&assent prob-
lems.

TRP Instance

Out of the SBB Cargo data we extracted tkieand theY -instance for the TRP.
The complete data set is confidential but we will discuss tbstimportant prop-
erties here. We set the parameters to the values show in 3able

The settings = 90km /h overestimates the actual speed of the freight trains,
as we found out later. To produce the aggregated set of shiggme aggregated
in a first step all shipments with identical source for fiénstance and all ship-
ments with identical destination for tHé-instance. This aggregation turns out
to be too drastic, as it produces shipments that exceed tRiema train load.
Therefore, in a second step we undid some of the aggregafidns was done
by hand in cooperation with the SBB Cargo planners, as vaniales apply as
to when two shipments are usually taken together. This led as X -instance
on a nearly complete graph with 33 nodes and 40 shipments Hrithstance on
a nearly complete graph with 34 nodes and 44 shipments. Whessize of the
train fleet to 24.

TRP solution

As the train fleet is fixed we can express the solution costlometers. The
distances include a “kilometer equivalent” of 12km for epatkup at a station.
We carried out our experiments on Machine A (see Appendiy.Azbr the X -

instance it took our optimization code 30 minutes to find tre feasible solution
of cost 2510km, after 5 hours it found the best solution ot @280km before
we stopped the calculation after 26 hours. At this point tiveel bound certified
that our best solution is at most 17% off the optimal solutieor theY -instance
the solution time was 130 minutes for the first feasible sofubf cost 3363km.

5.8. Experiments 103

The best solution found has cost 3197km and is 33% abovewss lwound after
63 hours. Compared to our experience with Model 0 and otheitasi models

this means that the decomposition allows us to simplify theing part in such a
way that we can find solutions to comparatively big instamcesasonable time.

5.8.4 TSSP Instance and Overall Solution

The two solutions to the TRP that we found constitute the tiripithe TSSP.
With the actual time windows of SBB Cargo they constitute @ieasible in-
stance for the TSSP because there afé-thutes that arrive afteY’-routes that
depend on them depart. At this point, the drawback of the m@osition be-
comes clear. To overcome this problem we chose the secohll ksgution that
was found (cost 3452km), which reduced the number of incaimlparains to
1. We then analyzed the solution pair by hand and solved ghéleompatibility
by forbidding two track segments in thé-instance. This lead to a solution to
the X -instance of cost 2440km. It follows that in our model therallecost of
this solution is 30892, which is well below the costs of thadienade solutions.
However the problem with this (partial) solution arisesnfirthe TSSP instance
that it represents: The resulting TSSP instance could weddah a few minutes
on Machine A (see Appendix A.1). The necessary hub-capscty2. This high
value is unrealistic for the size of the actual shunting yafrthe SBB network.
One reason that it is so high is that we tried to integrate rmb#ie shipments
that are currently transported by direct trains into the-epbke system. A sec-
ond reason is that our decomposition approach only corsstierhub-capacity
in the second step and ignores it for the TRP.

In order to partially overcome such problems we integratéthéed inter-
activity into our model that would allow the planner to fathir fix edges. We
used this mode to obtain the “hand-optimized” solution abdt/allows the plan-
ner to incorporate to some degree external constraintshietmodel that are not
present in the formulation.

To sum up, we were able to find a semi-realistic solution todhe-hub
problem but also hit the limits of this decomposition aptoaTlhe experience
with this model (together with SBB’s migration to a multifhsystem) motivated
us to develop the column generation model.

5.8.5 Model 2

We implemented Model 2 using the SCIP library by Achterb&jg {Ve are the
first to use SCIP for a column generation approach.

104 Chapter 5. Optimizing a Hub and Spoke Railway System

Table 5.3: Parameter settings for Model 2
L max Tsﬁunt Tc%uple v Cagz

25 cars| 54min | 27min | 60 km/h| 100

Preliminary results

In this section we report on some preliminary results of M&e

First, the full instance, on which the CG approach works,assiderably
larger than the aggregated instances for the TRP. We rumstarices with para-
meters that we partly rechecked with the SBB cargo plannmetsat to conserv-
ative values, see Table 5.3.

Moreover, we allow to use an additional hub now, as intendethb SBB
planners. With our current implementation we reach théngibff phase in the
root node of the branch and price tree after a calculatioe tifnaround three
days on Machine C (see Appendix A.1). At this time the valuthefrelaxation
is 20525, the value of the dual bound via Lemma 4.8 is 15920.

The dive and fix heuristic of Section 5.6.4 finds an integréltson of cost
34861. This value emphasizes the quality of our solutioh&model, if we
compare it to the values around 50000 of the hand-madeano#hutit is important
to point out here that the hand-made solution is for a single, whereas we
allow to use two hubs. In general, it is too early to conclud bur solution is
superior to the hand-made ones even if the objective valgegramising. This
has to be verified in cooperation with the SBB planners.

5.9 Related Work

The full problem that we modeled in this chapter and attadkenh different
angles is special enough to be new in the sense that it has nega studied
before in the literature. On the other hand, some of its carepts and related
problems have received considerable attention in thetilee.

As for the routing part, the TRP defined in this chapter candem &S a spe-
cial vehicle routing problem. The vehicle routing probleviRP) itself has been
studied in many variants, see the book edited by Toth and Mig4] for a sur-
vey or the annotated bibliography by Laporte [84]. As we sa8éction 5.5.3,
the TRP can be transformed to a DCVRP problem. Among the VRBI@ms
DCVRP has received comparatively little attention. Mosttef publications of
exact algorithms date back to the 80ies [27, 85, 86]. Thers@vreral implemen-

5.10. Summary of Results 105

tations for the general vehicle routing problem, comméasavell as free ones,
see [70, 105] a survey. One of the few free and open ones iotheely Ralphs
et al. [107], on which we base the implementation of Model &alpRs’ imple-
mentation is itself based on his SYMPHONY branch and cut &aork [106].
Another branch and cut implementation for the vehicle rayifproblem is by
Blasum and Hochstattler [16].

Column Generation plays a prominent role for vehicle raytproblems,
see [46, 117, 19] for a survey.

There are several publications related to the shuntingaifgr[89, 125].
However, most of these refer to a different problem, the shgnof unused
passenger trains that are parked in a shunting yard and gmdéraning and
maintenance checks there. This setting is completelyraiffiefrom ours. In [15]
the authors consider the shunting of trams in the morninghvaiso differs from
shunting freight trains. In [88] shunting without a hump irdiéferent model
is considered. In [39, 40] the authors model a problem thainslar to ours.
However, they do not consider the dynamic aspect and onlyypthe capac-
ity restriction. Their algorithm can be understood as onthefblack-box static
shunting algorithms used in Section 5.7.3.

The paper by van Wezel and Riezenbos [125] also discussesavimany
planning tasks in railway optimization are still performiey hand in spite of
numerous optimization efforts in the Algorithms and Opierat Research com-
munity. They come to the conclusion that apart from the dyali the mathe-
matical model itself, also robustness and flexibility issisoftware engineering
problems, and psychological questions play an importdat ro

5.10 Summary of Results

In this chapter we have seen how a sequence of models has éesopkd to
capture an involved scheduling and routing problem. Fromaatical point of
view, this seems to be a typical phenomenon: Rather thariafemg the ideal
model in one shot it often takes some iterations and feedbgadks to come up
with a useful model. The promising results of the column gatien approach
suggest that indeed the practical applicability of our apph is in reach.

On the theoretical side we have shown how the mincut-lineangement
problem, one of the showcase problems for the applicatidivade-and-conquer
in approximation algorithms [116], is at the core of the s=gring problem at the
hub. Furthermore, we have provided an exact solution to adsdmg problem
that is inspired by the shunting operation at the hub.

106 Chapter 5. Optimizing a Hub and Spoke Railway System

The results of this chapter that cover Model 0 and 1 are joioitkvwith
Michael Gatto. The theoretical results from Section 5.7 jahet work with
Michael Gatto and Riko Jacob. The implementation of Moded Atithe time
of writing this thesis an ongoing project with Tobias Aclierg, Alberto Ce-
selli, Michael Gatto, Marco E. Lubbecke, and Heiko Schdli The topics of this
chapter will also be covered with a different focus in thesdigation of Michael
Gatto.

5.11 Open Problems

There is a multitude of problems connected to the topicsisfahapter that can
be the subject of further research. Apart from the furtheetiemment of math-
ematical models and the application of advanced columnrgéoe techniques
for the train routing problem, also algorithms that consithee exact shunting
operations at a hub are interesting. As already mentioriedsla challenging
task because shunting yards differ in their exact layouttaed way of opera-
tion. Furthermore, we have not considered the engine daissignment at all.
Finally, also robustness issues are an important aspeathwhn lead to inter-
esting variations of the problems presented here.

Chapter 6

OVSF Code Assignment

Morpheus: “What can you see, Neo?”
Neo: “It's strange... the code is somehow different...”
(from The Matrix, Reloaded)

6.1 Introduction

In the last years the field of telecommunications has raisadlétude of inter-
esting new algorithmic questions. In this chapter we treebde reassignment
problem that arises in the Wideband Code Division Multipeéss method (W-
CDMA) of the Universal Mobile Telecommunications SystenMUS, for more
details see [74, 83]). More precisely, we focus on its mldtipccess method
Direct Sequence Code Division Multiple Access (DS-CDMAheTpurpose of
this access method is to enable all users in one cell to sharedammon re-
source, i.e., the bandwidth. In DS-CDMA this is accompléshy a spreading
and scrambling operation. Here we are interested in thedprg operation that
spreads the signal and separates the transmissions frobagieestation to the
different users. More precisely, we consider spreading tiidgonal Variable
Spreading Factor (OVSF-) codes [4, 74], which are used oddaalink (from
the base station to the user) and the dedicated channelf(usgrcial signaling)
of the uplink (from user to base station). These codes atigedkefrom a code
tree. The OVSF-code tree is a complete binary tree of héigwt is constructed
in the following way: The root is labeled with the vectdr), the left child of a
node labeled is labeled with(a, a), and the right child witHa, —a). Each user
in one cell is assigned a different OVSF-code. The key pitgpleat separates the

107

108 Chapter 6. OVSF Code Assignment

signals sent to the users is thmutual orthogonalityof the users’ codes. All as-
signed codes are mutually orthogonal if and only if there imast one assigned
code on each root-to-leaf path. In DS-CDMA users requeftrdifit data rates
and get OVSF-codes of different levels. The data rate isrgalg proportional
to the length of the code. In particular, it is irrelevant efhicode on a level a
user gets, as long as all assigned codes are mutually orihbg&fe say that an
assigned code in any node in the tdecksall codes in the subtree rooted at that
node and all codes on the path to the root, see Figure 6.1ahfilustration.

level bandwidth

(a) 3]
4w ()
height h
‘ 1 2
0 1
<4+— N leaves ——»
@ assigned code ® blocked code

Figure 6.1.1: A code assignment and blocked codes.

As users connect to and disconnect from a given base stagonrequest
and release codes, the code tree can get fragmented. It pperhthat a code
request for a higher level cannot be served at all becaus lewel codes block
all codes on this level. For example, in Figure 6.1.1 no code eanderted on
level two without reassigning another code, even thougtetiseenough available
bandwidth. This problem is known asde blockingdr code-tree fragmentation
[83, 93]. One way of solving this problem is to reassign sowdes in the tree
(more precisely, to assign different OVSF-codes of the dared to some users
in the cell). In Figure 6.1.2 some user requests a code ot teee where all
codes are blocked. Still, after reassigning some of thadyrassigned codes as
indicated by the dashed arrows, the request can be served.aHd in many of
the following figures, we only depict the relevant parts (sess) of the single
code tree.

The process of reassigning codes necessarily inducedisgogerhead from
the base station to the users whose codes change. This adestheuld be kept
small. Therefore, a natural objective already stated in [9®] is to serve all
code requests as long as this is possible, while keepingutmer of reassign-
ments as small as possible. As long as the total bandwidth sifitultaneously
active code requests does not exceed the total bandwiiklalWways possible to
serve them. The problem has been studied before with a fatsglations.
In [93] the problem of reassigning the codes for a single tmithl request is

6.1. Introduction 109

level request for code on level 2

9 ///’ ‘\\\\
1 7/ AN
0

Figure 6.1.2: A code insertion on level 2 into a single code tiéeshown without
the top levels.

introduced. The Dynamic Code Assignment (DCA) algorithmsented in [93]
is claimed to be optimal. We prove that this algorithm is naiegs optimal and
analyze natural versions of the underlying code assigni@hy) problem. Our
intention is to present a rigorous analysis of this problem.

6.1.1 Related Work

It was a paper by Minn and Siu [93] that originally drew oureation to this
problem. The one-step offline code assignment problem isetbfogether with
an algorithm that is claimed to solve it optimally [93]. As wkow in Section
6.3.1, this claim is not correct. Many of the follow-up papéke [9, 22, 24,
60, 61, 78, 109] acknowledge the original problem to be sbhyeMinn and Siu
and study some other aspects of it. Assarut et al. [9] ewalilet performance
of Minn and Siu’s DCA-algorithm, and compare it to other sties. Moreover,
they propose a different algorithm for a more restrictetirsg{8]. Others use
additional mechanisms like time multiplexing or code shgion top of the orig-
inal problem setting in order to mitigate the code blockimglglem [22, 109].
A different direction is to use a heuristic approach thaveslthe problem for
small input instances [22]. Kam, Minn and Siu [78] addressgioblem in the
context of bursty traffic and different Quality of Serviceq®). They come up
with a notion of “fairness” and also propose to use multipigx Priority based
schemes for different QoS classes can be found in [25], ainmlperspective are
[60, 61].

Fantacci and Nannicini [55] are among the first to exprespthblem in its
online version, although they have quite a different foduey present a scheme
that is similar to the compact representation scheme ind@e6t5, without fo-
cusing on the number of reassignments. Rouskas and Skd@sgdropose a
greedy online-algorithm that minimizes, in each step, thmier of addition-
ally blocked codes, and provide simulation results but nalyeis. Chen and
Chen [26] propose a best-fit least-recently used appro&thwathout analysis.

110 Chapter 6. OVSF Code Assignment

After our first publication on OVSF code assignment [50] sonwge results
were found. Tomamichel [121] shows that the general offliAgo@blem is NP-
complete and there exist instances of code trees for whighoptimal offline
greedy algorithm needs to reassign more than one code pEtiargdeletion
request.

6.1.2 Model and Notation

We consider the combinatorial problem of assigning codes&rs. The codes
are the nodes of an (OVSF-) code tfEe= (V, E). HereT is a complete binary
tree of heighth. The set of all users using a code at a given moment in time can
be modeled by sequest vector = (rq...r,) € N**1 wherer; is the number

of users requesting a code on levéWith bandwidth2?). The levels of the tree
are counted from the leaves to the root starting at level @ [&hel of nodev is
denoted by (v).

Each request is assigned to a position (node) in the tred, thad for all
levelsi € {0...h} there are exactly; codes on level. Moreover, on every
pathp; from a leaf; to the root there is at most one code assigned. We call
every set of positiong’ C V in the treeT that fulfills these properties eode
assignmentIf we want to emphasize the feasibility 6f ¢ V we also use the
term feasible code assignmenEor ease of presentation we denote the set of
codedby F. Throughout this chapter, a code tree is the tree togettterangode
assignmentt’. If a user connects to the base station, the resulting additi
request for a code represents@le insertionlon a given level). If some user
disconnects, this representslaletion(at a given position). A new request is
dropped if it cannot be served. This is the case if its acomgtavould exceed the
total bandwidth. ByV we denote the number of leavesioaind byn the number
of assigned codes = |F'| < N. After an insertion on levél, at timet, any CA-
algorithm must change the code assignméninto F;; for the new request
vectorr’ = (rg,...,r, +1,...,7). The size|F;y; \ F;| corresponds to the
number ofreassignmentsThis implies that for an insertion, the new assignment
is counted as a reassignment. We define the number of reas=ignas the cost
function. Deletions are not considered in the cost functibimey are charged to
the insertions. We can do that without any asymptotic oellsgnce every code
can be deleted at most once. When we want to emphasize theraioial side
of the problem we call a reassignmenmhavementf a code. A maximal subtree
of unblocked codes is calledgap tree(cf. Figure 6.5.6 (a) in Section 6.5).

We state the original CA problem studied by Minn and Siu thgetwith
some of its natural variants:

6.1. Introduction 111

one-step offline CA Given a code assignmetit for a request vector in an
OVSF code tred” and a code request for leviel Find a code assignment
F’ for the new request vectef = (rg,...,r; +1,...,7,) with minimum
number of reassignments.

general offline CA Given a sequencé of code insertions and deletions of
lengthm. Find a sequence of code assignments in an OVSF code tree
T such that the total number of reassignments is minimum naisspthe
initial code tree is empty.

online CA The code insertion and deletion requests are served as theg a
without knowledge of the future requests. The cost funcisoagain the
total number of reassignments over the whole request sequen

insertion-only online CA This is the online CA with insertions only.

6.1.3 Summary of Results

The results presented in this chapter are joint work withritas Erlebach, Riko
Jacob, Mat(s Mihd@k, Gabor Szab6 and Peter Widmayer. As already discussed
in the introduction, it is not always easy to divide the wodnéd together and
we do not want to lose in readability by leaving out some ofrtevant results.
An extended abstract of these results is presented in [58]has and will be
presented with different focus in the theses of Gabor 844B0] and Mat(s
Mihalak.

This chapter consists of two main parts: One on the one-stipecCA and
one on the online CA. These parts are preceded by a sectiahjéh we discuss
some general properties of the problems.

In the first part we begin with a counter-example to the DCgdeathm. We
proceed with an NP-completeness proof in Section 6.3.2 fEsult is my main
contribution to this chapter. In Section 6.3.3 we presengxact algorithm for
one-step offline CA with a running time that is exponentiathe heighth of
the tree. We show that a natural greedy algorithm alreadytioresd in [93]
achieves approximation ratfa The involved proof of this result will appear in
the thesis of Mats Mihak. Finally, we consider the fixed parameter tractability
of one-step offline CA.

In the second part we tackle the online-problem. It is a matanal version
of the problem, because we are interested in minimizing idneasing overhead
over a sequence of operations rather than for a single opecily.

We present & (h)-competitive algorithm and show that the greedy strat-
egy that minimizes the number of reassignments in everyistept better than

112 Chapter 6. OVSF Code Assignment

Q(h)-competitive in the worst case. This means that even an apaigorithm

for one-step CA, which solves an NP-complete problem inyeggzp, is only
Q(h) competitive. Also another strategy proposed in the liteatelivers no
more tharf)(h)-competitiveness but is optimal in an insertion only scenas

we show in Section 6.5.3. Finally, we sketch an online-athor with constant
competitive ratio that uses resource augmentation, whergive its code tree
one more level than the adversary. The details of this dlyorcan be found in
the thesis of Gabor Szab6 [120] and in [53].

6.2. Properties of OVSF Code Assignment 113

Figure 6.2.1: Correspondence of code assignments in tree of hdiglith codes
on levels{0,1,1,1,2 and prefix free codes of lengtt4,3,3,3,2

6.2 Properties of OVSF Code Assignment

In this section we present important properties of the OV8#ecassignment
problem that are relevant for the understanding of the falig sections.

6.2.1 Feasibility

One might ask whether there always exists a feasible codgnassnt for a new
code request. We present the necessary conditions foriblfeasde assignment.
In later sections we will always assume that a code assighisipossible for the
current set of codes.

Given an assignmerft of n codes in an OVSF code tr@éaccording to the

request vector = (ro,...,7,) and a new code request on levglthe ques-
tion is whether a code assignmefit exists for the new request vectgr =
(ro,...,r; +1,...,7r). Every assigned code on levehas its unique path

from the root to a node of length — [. The path can be encoded by a word
w € {0,1}"~ that describes the left/right decisions on this path. Thieago-
nality property amounts to demanding that these words fobmary prefix free
code. Given a prefix free code 84 with code lengthgh — I1,...,h — l,41}
(wherel; is the level of codeé € {1,...,n+ 1}) we can clearly assign codes on
levels!; by following the paths described by the code word€'j (see Figure
6.2.1). This shows that a code assignmg&hfor codes on levels, . .., 1,11 ex-
ists if and only if there exists a binary prefix free code segigén code lengths
{h=1l,...;h—lps1}.

We use the Kraft-McMillan inequality to check the existenda prefix free

114 Chapter 6. OVSF Code Assignment

code set of given code lengths.

Theorem 6.1 [5] A binary prefix free code set with code lengihs. . ., a,, ex-
ists if and only if

m

do2w <l (6.2.1)
=1

If we multiply Equation (6.2.1) by" and we consider the number of codes
r;, that are requested on levelwe get the following corollary.

Corollary 6.2 Given an OVSF code treE of heighth with N = 2" leaves and
arequest vector = (r, ...,) a feasible code assignment exists if and only if

h
Z’I”,"?Z SN
i=0

Corollary 6.2 shows that checking the existence of a feasibbe assignment
given the request vector can be done in linear time.

6.2.2 Irrelevance of Higher Level Codes

We show that an optimal algorithm for the one-step CA probleoves only

codes on levels lower than the requested lévelA similar result was already
given in [93]. In [93] the authors mention without proof thhe optimal algo-

rithm does not need to move codes on higher levels than theested level. We
give the proof of a similar statement here.

Lemma 6.3 Letc be an insertion on levd|. into a code treel’. Then for every
code reassignmerit’ that insertsc and that moves a code on level [, there
exists a code reassignmeht’ that insertsc and moves fewer codes, i.e., with
|[F"\ F| < |F"\ F]|.

Proof. Letz € F be the highest code that is reassigned®yn a level above
the levell,. and letS denote the set of codes moved BY into the subtred’,
rooted at node. We denote by the rest of the codes that are movediyy(see
Figure 6.2.2). The cost df’ is | S| + | R|. The code reassignmeht’ is defined
as follows: lety be the position wheré&” moves the code, thenF” will move
the codes inS into the subtred’, rooted aty and leave the code in 7, and
move the rest of the codes Rin the same way aB”. The cost ofF” is at least
one less than the cost &7 since it does not move the codeln Figure 6.2.2 the
cost of I’ is 6 and the cost of"” is 5. O

6.2. Properties of OVSF Code Assignment 115

Figure 6.2.2: Non-optimality of a code assignmefit that reassigns codes also
on higher levels than the requested level.

116 Chapter 6. OVSF Code Assignment

6.3 One-Step Offline CA

In this section we present results for the one-step CA proble

6.3.1 Non-Optimality of Greedy Algorithms

First we look at possible greedy algorithms for the one-sflime CA. A straight-
forward greedy approach is to select for a code insertiofaaa with minimum
cost that is not blocked by a code above the requested leaairding to some
cost function. All codes in the selected subtree must thereassigned. So in
every step a top-down greedy algorithm chooses the maxinamdvidth code
that has to be reassigned, places it at the root of a minimsitrscbtree, takes out
the codes in that subtree and proceeds recursively. The 8@drithm in [93]
works in this way. The authors propose different cost fuordj among which
the “topology search” cost function is claimed to solve tine-gtep offline CA
optimally. Here we show the following theorem:

Theorem 6.4 Any top-down greedy algorithmgg depending only on the cur-
rent assignment of the considered subtree is not optimal.

As all proposed cost functions in [93] depend only on theentrassignment
of the considered subtree, this theorem implies the noimagity of the DCA-
algorithm.

Proof. Our construction considers the subtrees in Figure 6.3.1tfaméssign-
ment of a new code to the root of the trfEg The rest of the subtrees that are not
shown are supposed to be fully assigned with codes on théeleslf so that no
optimal algorithm moves codes into those subtrees. Tye®as a code of band-
width 2k on levell and depending on the cost function has or does not have a
code with bandwidttt on levell — 1. The subtred? containsk — 1 codes at leaf
level and the rest of the subtree is empty. The subffeesmd’; containk codes

at leaf level interleaved with free leaves. As we will show in Corollary 6.9 any
optimal one-step algorithm can be forced to produce suctssigrament. This
original assignment rules out all cost functions that domdtthe initial code at
the root ofTy. We are left with two cases:

case 1: The cost function evaluatéds andTs as cheaper thaih;. In this case
we let the subtre&), contain only the code with bandwid#t. Algorithm
Atg reassigns the code with bandwidth to the root of the subtre®, or
T3, which causes one more reassignment than assigning it tmttef
T1, hence the algorithm fails to produce the optimal solution.

6.3. One-Step Offline CA 117

level T, OPT -»

Figure 6.3.1: Example for the proof of Theorem 6.4.

case 2: The cost function evaluatds as cheaper thdf, and73. In this case we
let the subtred have both codesdyg moves the code with bandwidt
to the root of7; and the code with bandwidthinto the tre€l; or 75, see
solid lines in Figure 6.3.1. The number of reassigned coslgs 2 + 2.
But the minimum number of reassignmentskis- 3, which is achieved
when the code with bandwidthis moved in the empty part @f;, and the
code with bandwidti2k is moved to the root of;, or T3, see dashed lines
in Figure 6.3.1.

6.3.2 NP-Hardness

We prove the decision variant of the one-step offline CA to Pedémplete. The
canonical decision variant of it is to decide whether a nededasertion can be
handled with cost less or equal to a numbegr, which is also part of the input.
First of all, we note that the decision-variant is in NP, hessawe can guess an
optimal assignment and verify in polynomial time if it is &lale and if its cost

is lower or equal ta-,,x. The NP-completeness is established by a reduction
from the three-dimensional matching problem (3DM) that wstate here for
completeness (cf. [62]):

Problem 6.5 (3DM) Given asetM C W x X x Y, whereWW, X andY are
disjoint sets having the same numlgeof elements. Doed/ contain a perfect
matching, i.e., a subsétl’ C M such thajM’| = ¢ and no two elements af’
agree in any coordinate?

118 Chapter 6. OVSF Code Assignment

code request —p
for this level

triplet
trees

[E—
e o 0 0 0

token tree \ / [\ ceee--

Figure 6.3.2: Sketch of the construction

Let the elements of the ground sét5 X, Y be indexed from to ¢. To simplify
the presentation, we introduce thlicator vectorof a triplet (w;, z;, yx) as a
zero-one vector of lengtdy that is all zero except at the indiceg+j and2q+k.
The idea of the reduction is to view the triplets as such iadicvectors and to
observe that the problem 3DM is equivalent to finding a subsetindicator
vectors out of the indicator vectors M that sum up to the all-one vector.

Figure 6.3.2 shows an outline of the construction that wefasthe reduc-
tion. An input to 3DM is transformed into an initial feasibdssignment that
consists of a token tree on the left side and different smakes on the right.
A code insertion request is given at the level indicated aftgure. The con-
struction is set up in such a way that the code must be assignisg root of
the left tree, thaoken tree in order to minimize the number of reassignments.
Similarly, theq codes that are forced to move from the left to the right trestmu
be assigned to the roots wiplet trees The choice of the triplet trees reflects
the choice of the corresponding triplets of a matching. Alies in the chosen
triplet trees find a place without any additional reassigntnifeand only if these
triplets really represent a 3D matching.

Let us now look into the details of the construction. The tokee consists
of ¢ codes positioned arbitrarily on levil ., with sufficient depth, for example
depth[log(|M| + 21¢*> + q)| + 1. The triplet trees have their roots on the same
level li.ri. They are constructed from the indicator vectors of thdetip For
each of the3q positions of the vector such a tree has four levels — togethlérd
alayer—that encode either zero or one, where the encodings of nérorze are
shown in Figure 6.3.3 (a) and (b). Figures 6.3.3 (c) and (djvshow layers are
stacked usingibling trees(the sibling tree of a zero-tree is identical to that of a
one-tree shown in the figure). We have chosen the zero-treksree-trees such
that both have the same number of codes and occupy the samwildtn but
are still different.

6.3. One-Step Offline CA 119

AR £id OO

(a) The zero-tree (b) The one-tree (c) A layer, consisting of a one-tree and its
sibling

(d) Stacking lay-
ers

Figure 6.3.3: Encoding of zero and one

The receiver trees are supposed to receive all codes in tsechriplet trees.
These codes fit exactly in the free positions, if and only & tihosen triplets
form a 3DM, i.e., if their indicator vectors sum up to the ale vector. This
equivalence directly tells us, how many codes the trees negsive on which
level: On every layer the receiver trees must take 1 zero-trees, one-tree
andq sibling-trees, so that on the four levels of each layer theust be exactly
0,q+ 1,59 — 3resp.q + 2 free codes (plug extra codes on the very last level).
For each one of thesg; - 7¢ + ¢ = 21¢* + q codes we build one receiver tree.
The receiver tree for a code on levéls a tree with root on levdl,,. with the
following properties. It has one free position on leifethe rest of the tree is full
and it contain®1¢+ 2 codes, i.e., one more code than a triplet tree. Clearly, such
a tree always exists in our situation.

Finally, the fill trees are trees that are completely full Aade one more code
than the receiver trees. They fill up the leigl,, in the sibling-tree of the token
tree.

An interesting question is, whether this transformati@mfi3DM to the one-
step offline CA can be done in polynomial time. This dependsheninput
encoding of our problem. We consider the following naturadadings:

e a zero-one vector that specifies for every node of the tre¢hghéhere is
a code or not,

120 Chapter 6. OVSF Code Assignment

e a sparse representation of the tree, consisting only of aks#ipns of the
assigned codes.

Obviously, the transformation cannot be done in polynotina for the first
input encoding, because the generated tre@Has'r« leaves. For the second
input encoding the transformation is polynomial, becabsetbtal number of
generated codes is polynomiakiywhich is polynomial in the input size of 3DM.
Besides, we should rather not expect an NP-completenessfprahe first input
encoding, because this would suggest—together with thardigprogramming
algorithm in this paper-°(°&™)-algorithms for all problems in NP.

We now state the crucial property of the construction in anfem

Lemma 6.6 Let M be an input for3DM and ¢ the transformation described
above. The! € 3DM if and only if¢(M) can be done withy = 21¢ +2¢+1
reassignments.

Proof. Assume there is a 3DM/’ C M. Now consider the reassignment that
assigns the code insertion to the root of the token tree, lamdokens to the
roots of the triplet trees that correspond to the tripletdih We know that the
corresponding indicator vectors sum up to the all-one vestothat all codes in
the triplet trees that need to be reassigned fit exactly indbeiver trees. In total,
1+ ¢+ (21¢g+ 1)g = « codes are (re-)assigned.

Now assume there is no matching. This implies that everyesudfs; indi-
cator vectors does not sum up to the all-one vector. Assuma ¢ontradiction
that we can still serve) (M) with at mosta reassignments. Clearly, the initial
code insertion must be assigned to the left tree, otherwsaeed too many
reassignments. Thetokens must not trigger more thdflq + 1)g additional
reassignments. This is only possible if they are all assigo¢riplet trees, which
triggers exactly21¢+1)g necessary reassignments. Now no more reassignments
are allowed. But we know that the correspondijrigdicator vectors do not sum
up to the all-one vector, in particular, there must be onédtiposthat sums up to
zero. In the layer of this position the receiver-trees neegizero-trees and no
one-tree instead af — 1 zero trees and one one-tree. But by construction the
extra zero-tree cannot be assigned to the remaining re¢edes of the one-tree.

It cannot be assigned somewhere else either, because thid vause an extra
reassignment on a different layer. This is why an extra igassent is needed,
which brings the total number of (re-)assignments alhave O

One could wonder whether an optimal one-step offline CA étigorcan ever
attain the configuration that we construct for the transttiam. We prove below

6.3. One-Step Offline CA 121

in Corollary 6.9 that we can force such an algorithm into aogfiguration. To
sum up, we have shown the following theorem:

Theorem 6.7 The decision variant of the one-step offline CA is NP-corafitet
an input given by a list of positions of the assigned codesth@dode insertion
level.

Enforcing arbitrary configurations We show that for any configuratiofi’

and any optimal one-step algorithithere exists a sequence of code insertions
and deletions of polynomial length, so thatends up inC’ on that sequence.
Notice that any optimal one-step algorithm reassigns codssif it has to, i.e.,

it places a code without any additional reassignments # ihipossible, and it
does not reassign after a deletion. The result even appliasyt algorithmA
with these properties.

We start with the empty configuratiary. The idea of the proof is to take a
detour and first attain a full-capacity configuratior; and then go from there to
C'’. The second step is easy: It suffices to delete all the codgégirthat are not
in C’; A must not do any reassignments during these deletions., wesshow
that we can forcel to produce an arbitrarily chosen configurat@n, that uses
the full tree capacity.

Theorem 6.8 Any one-step optimal algorithm can be led to an arbitrary full
configurationCt,;; with n assigned codes by a request sequence of length
3n.

Proof. Recall thath denotes the height of the code tree. We proceed top-down:
On every level” with codes inCy,; we first fill all its unblocked positions using

at most2" ! code insertions on levél. A just fills I’ with codes. Then we delete

all codes o’ that are not inCy,;; and proceed recursively on the next level.

We have to argue that we do not insert too many codes in thisepso To
see this, observe that we only insert and delete codes abhewecbdes inCyy,
and we do this at most once in every node. Now if we considebihary tree
the leaves of which are the codes(h,;, then we see that the number of insert
operation is bounded by + n — 1, wheren — 1 is the number of inner nodes of
this tree. Together with the deletions we obtain the stateme a

We come back to arbitrary configurations.

Corollary 6.9 Given a configuration tre€"” of heighth with n assigned codes,
there exists a sequenes, ..., o, of code insertions and deletions of length
m < 4nh that forcesA into C”.

122 Chapter 6. OVSF Code Assignment

(27 17 17 0)

©) (@) (@W)(©) (0)(©0) (0)

Figure 6.3.4:Node signatures.

Proof. We defineCt,;, from C” by filling the gap trees i’ (as high as possible)
with codes. Each code causes at most one gap tree on evdnhikevee we need
at mosth codes to fill the gap trees for one code. Altogether, we nestbatnh
codes tofill all gap trees. According to Theorem 6.8, we carstract a sequence
of lengthm < 3nh that forcesA into Cr,1. Then we delete the padding codes
and end up inC’. Altogether we need at mosdih requests for code insertion
and deletion. O

6.3.3 Exactn®? Algorithm

In this section we solve the one-step offline CA problem optiynusing a dy-
namic programming approach. The key idea of the resultiggrahm is to store
the right information in the nodes of the tree and to buildgtin a bottom-up
fashion.

To make this construction precise, we defirggnatureof a subtred’, with
rootv as ani(v) + 1-dimensional vectos” = (s, ..., sj,,), In which s is
the number of codes i, on leveli, see Figure 6.3.4. A signatusds feasible
if there exists a subtreg, with a feasible code assignment that has signature
The information stored in every nodef the tree consists of a table, in which all
possible feasible signatures of an arbitrary tree of hdightare stored together
with their cost forT),. Here the cost of such a signaturéor 7, (usuallys # sv)
is defined as the minimum number of codedinthat have to move away from
their old position in order to attain some trég with signatures. To attainT’, it
can be necessary to also move ifitocodes from other subtrees but we do not
count these movements for the costdbr 7).

Given a code tred” with all these tables computed, one can compute the
cost of any single code insertion from the table at the roateno Let s =
(s, -..,s%) be the signature of the whole code tree before insertiom the

6.3. One-Step Offline CA 123

cost of an insertion at levélis the cost of the signatukeg, ... ,s] +1,...,s})

in this table plus one. This follows because the minimum nemab codes that
are moved away from their positionsihis equal to the number of reassignments
minus one.

The computation of the tables starts at the leaf level, whwzecost of the
one-dimensional signatures is trivially defined. At any @odf level [(v) the
costc(v, s) of signatures for T, is computed from the cost incurred in the left
subtre€eTl; of v plus the cost incurred in the right subtrége plus the cost at.
The costs:(l, s") andc(r, s”) in the subtrees come from two feasible signatures
with the propertys = (s + 7 -, 80,y 1),y 1> Si(v))- ANy pair (s’, s”) of
such signatures corresponds to a possible configuratientaft code insertion.
The best pair for node givesc(v, s). Lets” = (s, ..., sj,,) be the signature
of T,,, then it holds that

e(l,(0,...,0)) +¢(r, (0,...,0)) for S0y = 1
min{s/,su|(S/,O)+(su7()225} .)

(c(l,s") +c(r,s")) for s,y =0, (o) = 0
1 for Si(v) = O,S;)(v) =1.

c(v,8) =

The costs of all signaturesfor v can be calculated simultaneously by com-
bining the two tables in the left and right childrenwofObserve for the running
time that the number of feasible signatures is boundeghby 1)" because there
cannot be more than codes on any level. The time to combine two tables is
O(n?M), thus the total running time is bounded ©y2" - n2").

Theorem 6.10 The one-step offline CA can be optimally solved in tinfe” -
n2?h) and space(h - n™).

6.3.4 h-Approximation Algorithm

In this section we propose and analyze a greedy algorithrorferstep offline
CA, i.e., for the problem of assigning an initial code ingaTtcy into a code
treeT" with given code assignmeifit. The idea of the greedy algorithAyeedy
is to assign the code to the rooty of the subtred’, that contains the fewest
assigned codes among all possible subtrees. From LemmaetkBaw that no
optimal algorithm reassigns codes on higher levels thaoihent one; hence the
possible subtrees are those that do not contain assigned ocodor above their
root. Then the greedy algorithm takes all code§jn(denoted by'(7,)) and

124 Chapter 6. OVSF Code Assignment

reassigns them recursively in the same way, always promessides of higher
level first.

At every timet algorithm Ageeqy has to assign a séi; of codes into the
current treel ™. Initially, Co = {co} andT® = T For a given position, code or
code insertior, its level is denoted bi(c).

Algorithm 6 : Agreedy
Co—{ch; T «—T
t+—20
while C; # 0 do
¢ «— element with highest level i@
g < the root of a subtre@], of levell(c;) with
the fewest codes in it and no code on or above its root
/I assigne; to positiong
TH —— (T*\T(TY)) U {g}
Cry1 — (CUT(Ty)) \ {er}
t—1t+1
end

In [93] a similar algorithm is proposed as a heuristic for Gtep offline
CA. We prove thatAgeedyhas approximation ratib. This bound is asymptoti-
cally tight: In the following examples we show thdjeqycan be forced to use
Q(h) - OPT (re-)assignments (see Figure 6.3.5), where OPT reféne toptimal
number of (re-)assignments. A new cagigy is assigned byl greeqyto the root
of Ty (which contains the least number of codes). The two codeswwiil — 1
from T}, are reassigned as shown in the figure, one code can be rezbagm
Toptand the other one goes recursively iffto In total, Agreeqydoes2 - [+ 1 (re-
)assignments while the optimal algorithm assigrs, into the root of7;, and
reassigns the three codes from the leaf level into the ffegs,, 15, requiring
only 4 (re-)assignments. Obviously, for this examplgeedy iS Not better than
(21 4 1)/4 times the optimal. In generdlcan be(h).

For the upper bound we compa#greeqyto the optimal algorithmAgpt. Agpt
assignsy to the root of a subtre€, , the codes frori’,, to some other subtrees,
and so on. Let us call the set of subtrees to the root of wHighmoves codes
the opt-trees denoted byl and the arcs that show hadsp,: moves the codes
theopt-arcs(cf. Figure 6.3.6). B} (7o) we denote the set of nodesTgy:.

A sketch of the proof is as follows. First, we show that in e\&ept Agreedy
has the possibility to assign the codegininto positions inside the opt-trees.
This possibility can be expressed by a code mapping C; — V(Zop). The

6.3. One-Step Offline CA 125

oo R ~—
— anopt-arc ~~ ----- = greedy assignment

Figure 6.3.6: Aopt moves codes to assign a new cedeusing opt-arcs. The
opt-trees are subtrees to the root of whidh, moves codes. Here, the cost of the
optimal solution is 5. The greedy algorithm has cost 6.

126 Chapter 6. OVSF Code Assignment

key-property is now that in every step of the algorithm thisréhe theoretical
choice to complete the current assignment using the cod@in@ap,; and the
opt-arcs as follows: Usé, to assign the codes ifi; into positions in the opt-
trees and then use the opt-arcs to move codes out of theseesibt the opt-trees
to produce a feasible code assignment. We will see that tbjzepty is enough
to ensure thatlgreedyincurs a cost of no more than OPT on every level.

In the process of the algorithm it can happen that we havedogdthe opt-
arcs in order to ensure the existencespf To model the necessary changes we
introducea,-arcs that represent the changed opt-arcs aftézps of the greedy
algorithm.

To make the proof-sketch precise, we need the following diefirs:

Definition 6.11 Let 7o be the set of the opt-trees for a code insertigrand
let T (together with its code assignmefit) be the code tree aftersteps of the
greedy algorithmAgeeqy AN c-mappingat timet is a mappinge : M., —
V(Topt) for somel,, C F*, such thatvv € M,, : [(v) = l((v)) and
a¢(M,,) U (F'\ M,,) is a code assignment.

Note thatin generat! is not a code assignment for all codes since it does not
contain the codes i*. The setv;(M,,) U (F* \ M,,) represents the resulting
code assignment (that again does not contain the cod&9 iafter reassignment
of the codesV/,,, C F* by a.

Definition 6.12 Let 7" be a code treey, y be positions il and «; be ana-
mapping. We say thatdepend®nz in Tt anday, if there is a path fromx to y
using only tree-edges from a parent to a child anearcs. Bydep, (x) we denote
the set of all positiong that depend o in 7% and«;. We say that amv-arc
(u,v) depends or: if u € dep,(x).

For an illustration of this definition, see Figure 6.3.7.

Definition 6.13 At timet a pair (¢, o) of a code mapping; : C;, — V(Zop)
and ana-mappingq; is called anindependent mappinfgr 7%, if the following
properties hold:

1. Ve € C; the levels ofp;(c¢) andc are the same (i.€(c) = I(¢+(c)).

2. Ve € C; there is no code il at or above the roots of the trees in

dep, (91 (c))-

3. the code movements realized/hyanda; (i.e. the set), (Cy) Uay (M,) U
(Ft\ M,,)) form a code assignment.

6.3. One-Step Offline CA 127

g £

Figure 6.3.7: The filled subtrees represent all the positions that depend o

4. every node in the domail,,, of a; is contained indep, (¢:(C})) (i.e., no
unnecessary arcs are im).

Note thatp, anda, can equivalently be viewed as functions and as collections
of arcs of the forn{c, ¢:(c)) and(u, ax(u)), respectively. We writéep, (¢:(C}))
for the setl ..., dep,(¢:(c)). Note that if a pair(¢;, a;) is an independent
mapping forT*, thendep, (¢:(C;)) is contained in opt-trees and every node in
dep,(¢:(Cy)) can be reached on exactly one path fréfn(using onep;-arc and
an arbitrary sequence of tree-arcs, which always go frorergao child, and
aq-arcs from a code € T'(T*) to ai(c)).

Now we state a lemma that is crucial for the analysis of thedyestrategy.

Lemma 6.14 For every set; in algorithm Agreeqythe following invariant holds:

There is an independent mappif , o) for 7°. (6.3.1)

Proof. The proof is done by induction anand shows how to construct an in-
dependent mappin@p;+1, a;+1) from (¢4, o) by case analysis. The detailed
proof can be found in [49] and will be included in the thesidaztis Mihdhk.

(]

We remark that Lemma 6.14 actually applies to all algoritbmswork level-
wise top-down and choose a subtfEgfor each code; < C; arbitrarily under
the condition that there is no code on or above the position

We can express the cost of the optimal solution by the opstre

Lemma 6.15 (a) The optimal cost is equal to the number of assigned cades i
the opt-trees plus one, and (b) it is equal to the number otiegts.

128 Chapter 6. OVSF Code Assignment

Proof. Observe for (a) thatl,p,: moves all the codes in the opt-trees and for (b)
that Aqpr moves one code into the root of every opt-tree. O

Theorem 6.16 The algorithmAgyeeqyhas an approximation ratio of.

Proof. Agreedy Works level-wise top-down. We show that on every leiéhe
greedy algorithm incurs a cost of at most OPT. Consider atiméere Agreedy

is about to start a new levéli.e., beforedgeeqyassigns the first code on level
Assume that’;, containsg; codes on level. ThenAgreeqyplaces these; codes

in the roots of they subtrees on level containing the fewest codes. The code
mapping¢,, that is part of the independent mappitw, , o,), which exists by
Lemma 6.14, maps each of thegeodes to a different position in the opt-trees.
Therefore, the total number of codes in theubtrees with roots at;, (¢) (for ca
code on level in C},) is at least the number of codes in thesubtrees chosen by
Agreedy Combining this with Lemma 6.15(a), we see that on everyl I&yg.edy
incurs a cost (number of codes that are moved away from thositipn in the
tree) that is at mostly,y's total cost. O

6.4 Fixed Parameter Tractability of the Problem

In this section we consider the fixed parameter tractabilitthe parameterized
one-step offline Code Assignment problem, see also Defin2i@. Parameter-
ized problems are described by languages ¥* x N. If (z, k) € L, we refer
to k as the parameter.

We assume that our problem is given by a gairk), wherex encodes the
code insertion on levéland the current code assignment &nid the parameter.
We assume the encoding of the code assignment in the zergemtar form
x1,...,Ton1_q Saying for every node of the tree whether there is an assigned
code. Denote for the purpose of this sectionsbyhe size of the input, i.e.,
n = || =21 — 1,

We consider various variants of parameters for the probléra.most natural
ones are the number of moved codesor the levell of the code insertion. To
show the fixed parameter tractability, we reuse the ideakefkact dynamic
programming algorithm, which stores at every node a tab#gl gfossible signa-
tures.

We first show that the problem is fixed parameter tractablthafparame-
ters are bothn andl, i.e., we show an algorithm solving the problem in time
O(f(m,1)p(n)) for some polynomiap(n).

6.4. Fixed Parameter Tractability of the Problem 129

For a code insertion into the code tree for lelyele know that we only move
codes from lower levels thah Hence, when building the tables at nodes, we
need to consider only those signatures that differ on leyels. , I — 1 from the
signature of the current subtree. From the assumption thaheve at mostn
codes, we have that on each of these levels, the considgretsie can differ by
at mostm. Hence, the number of considered signatures in every ncatan®st
(2m +1)!. To compute all the tables, we need to combine all the tabtes the
children nodes, i.e., we have to consi@2m + 1) pairs for every node. From
this we get a running time aP(2"(2m + 1)2!), which is certainly of the form
f(m, Dp(n).

For the case, where we have ohlys the parameter, we immediately get that
we move from every subtreég, at most2! codes, hence we bound the number of
codes moved in every subtree by a parameter (we note thatdvetbound the
overall number of moved codes) = 2'.

Consider now the case, where onlyis the parameter. Since we move at
mostm codes within the tree, we know that at mestcodes come into the
subtree and at most go away from the subtree. Hence, assigning for each such
possibility a level out of), ..., [, we get an upper bound of at mdgt+ 1)2™
signatures to be considered at every node on lev8lincel + 1 < h forl =
0,...,h—1we getat every node at mast™ = log n?™ signatures. From [108]
we can use the inequaliffogn)™ < (3mlogm)™ + n to express the size of
each table in the form(m) + n. To compute the table for every node, we need
time n(g(m) + n)? which is certainly of the forny (m)p(n).

We summarize the results of this section in the followingotieen.

Theorem 6.17 The one-step offline CA problem is fixed parameter tractadsle f
the following parameters:

e the levell of the code insertion and

e the numbern of moved codes.

130 Chapter 6. OVSF Code Assignment

N?&f&f&f&dewﬁf&f&ﬁ
f&f&f&félevéﬁ—lf&f&féf&

N/4+1
del: N/4 j’\‘ j’\‘ %

Figure 6.5.1: Lower bound for the online assignment problem.

ostopT

6.5 Online CA

Here we study the CA problem in an online setting, see Ch&pté&ve assume
that insertions do not exceed the total available bandwidth

In the case of the online CA problem the requests for codeatines and
deletions must be handled one after another, i.e.jttheequest must be served
before the + 1st requestis known. An online algorithm ALG for the CA prable
is c-competitivef there is a constant such that for all finite input sequenceés

ALG(I) < ¢ OPT(I) + o

We give a lower bound on the competitive ratio, analyze sthagorithms
and present a resource augmented algorithm with constergetitive ratio.

Theorem 6.18 No deterministic algorithmdA for the online CA problem can be
better thanl.5-competitive.

Proof. Let A be any deterministic algorithm for the problem. Considleteaf
insertions. The adversary can deldtg2 codes (every second) to get the situation
in Figure 6.5.1.

Then a code insertion at levél— 1 causesV/4 code reassignments. We
can proceed with the left subtree of full leaf codes recetgiand repeat this
procesglog, N — 1) times. The optimal algorithm, assigns the leaves in the
first step in such a way that it does not need any reassignrhatt &hus, Agpt
needsN + log, N — 1 code assignments. Algoritheh needsN + T'(N) code

6.5. Online CA 131

assignments, whefB(N) = 1+N/44+T(N/2)andT’(2) = 0. Clearly, T'(N) =
logy N — 14 5 (1-2/N). If Ca < c-Coprthenc > SR2E08 N2y
3/2. O

6.5.1 Compact representation algorithm

This algorithm maintains the codes in the tfiésorted and compact. For a given
node/code € T we denote by(v) its level and byw(v) its string representation,
i.e., the description of the path from the root to the nodéécavhered) means
left child and1 right child as in Section 6.2.1. We use the lexicographiearty
when comparing two string representations.(Bwe denote the set of unblocked
nodes of the tree. We maintain the following invariants:

Veodesu,v € F: I(u) <l(v) = w(u) < w), (6.5.1)
Vnodesu,v € T: Il(u)<Illv) Nu€eF ANvelU
= w(u) < w(v). (6.5.2)

This states that we want to keep the codes in the tree ordesedléft to
right according to their levels (higher level assigned odee to the right of
lower level assigned codes) and compact (no unblocked apttestleft of any
assigned code on the same level).

In the following analysis we show that this algorithm is natrae tharO(h)
times the optimum for the offline version. We also give an epl@nthat shows
that the algorithm is asymptotically not better than this.

Theorem 6.19 Algorithm AcompactSatisfying invariants (6.5.1) and (6.5.2) per-
forms at most code reassignments per insertion or deletion.

Proof. We show that for both insertion and deletion we need to makeost/
code reassignments. When inserting a code on leve look for the rightmost
unassigned position on that level that maintains the iavsi(6.5.1) and (6.5.2)
among codeson level...,[. Either the found node is not blocked, so that we do
not move any codes, or the code is blocked by some assignedorod higher
level I’ > [(see Figure 6.5.2). In the latter case we remove this codeeto f
the position for level and handle the new code insertion on le¥ekcursively.
Since we move at most one code at each level and we/hiexels, we move at
mosth codes for each insertion.

Handling the deletion operation is similar, we just movedbdes from right

to left in the tree and move at most one code per level to maittia invariants.
O

132 Chapter 6. OVSF Code Assignment

Figure 6.5.2: For a code insertion, Algorithmcompactfinds the leftmost position
(blocked or unblocked) that has no code on it and no code irstiidree below
it. It reassigns at most one code at every level.

1IX> o 14

Figure 6.5.3: Code assignments for levels0,1,2,3,4,...,h — 1 and four
consecutive operations: 1. DELETE(h-1), 2. INSERT(0), BLBTE(0), 4. IN-
SERT(h-1).

Corollary 6.20 Algorithm Acompact Satisfying invariants (6.5.1) and (6.5.2) is
O(h)-competitive.

Proof. In the sequence = o4,...,0, the number of deletiond must be
smaller or equal to the numbeof insertions, which implieg < m/2. The cost
of any optimal algorithm is then at least> m /2. On the other hand4compact
incurs a cost of at most. - 4, which implies that it isO(h)-competitive. O

Theorem 6.21 Any algorithmA satisfying invariant6.5.1) is 2(h)-competitive.

Proof. Consider the sequence of code insertions on leéyélsl, 2,3, 4,..., h —

1. For these insertions, there is a unique code assignmasfyga) invariant
(6.5.1), see Figure 6.5.3. Consider now two requests—deletionettue at
level h — 1 and insertion of a code on level Then A; has to move every
code on level > 1 to the right to create space for the code assignment on level
0 and maintain the invariar(t.5.1). This takesl code assignment and— 2
reassignments. Consider as the next requests the delétiba third code on
level zero and an insertion on leviel- 1. Again, to maintain invariant6.5.1),

6.5. Online CA 133

1.DEL

Aty

¥ 3.INS

ﬁ@&&&&&&
OGO OOD

Figure 6.5.4: Requests that a greedy strategy cannot handle efficiently.

A has to move every code on leveb 1 to the left. This takes agaih code
assignment antl — 2 reassignments. An optimal algorithm can handle these four
requests with two assignments, since it can assign thec¢hitd on level zero in
the right subtree, wheré; assigns the code on leviel- 1. Repeating these four
requests times, the total cost of the algorithay is thenC; = h+1+42k(h—1),
whereas OPT haSopt = h + 1 + 2k. As k goes to infinity, the rati@' 4 /Copt
becomes2(h). O

6.5.2 Greedy strategies

Assume we have a deterministic algoritbtithat solves the one-step offline CA
problem. ThisA immediately leads to a greedy online-strategy. As an optima
algorithm breaks ties in an unspecified way, the onlinetessacan vary for dif-
ferent optimal one-step offline algorithms.

Theorem 6.22 Any deterministic greedy online-strategy, i.e. a stratibgy mini-
mizes the number of reassignments for every insertion aedale is{2(h) com-
petitive.

Proof. Assume thatd is a fixed, greedy online-strategy. First we insamt2
codes at level 1. Asl is deterministic we can now delete every second level-
1 code, and inserdV/2 level-0 codes. This leads to the situation depicted in
Figure 6.5.4. Then we delete two codes at lével 1 (as A is deterministic it

is clear which codes to delete) and immediately assign a abldwell + 1. As

it is optimal (and up to symmetry unique) the algorittirmoves two codes as
depicted. The optimal strategy arranges the level-1 cadasway that it does
not need any additional reassignments. We proceed in thisalemg level 1

in the first round, then left to right on level 2 in a second ruand continue

134 Chapter 6. OVSF Code Assignment

Figure 6.5.5: Reassignment of one code reduces the number of blocked codes
from 3 to 2.

toward the root. Algorithm4 movesN/4 codes in the first round and assigns
N/23 codes. In general, in every rounthe algorithm moved//4 level-0 codes
and assign®//2¢2 level-i codes. Altogether, the greedy strategy ne@¢®’) +
(N/H)Q(log N) = Q(Nlog N) (re-)assignments, whereas the optimal strategy
does not need any reassignments and 6H{l)V) assignments. O

6.5.3 Minimizing the number of blocked codes

The idea of minimizing the number of blocked codes is memtibim [109] but
not analyzed at all. In every step the algorithm tries tasfathe invariant:

The number of blocked codes’ihis minimum. (6.5.3)

In Figure 6.5.5 we see a situation that does not satisfy tveriemt (6.5.3).
Moving a code reduces the number of blocked codes by one. e fghat
this approach is equivalent to minimizing the number of gapg on every level
(Lemma 6.24). Recall that a gap tree is a maximal subtreelboked codes.

Definition 6.23 The level of the root of a gap tree is called tlegel of the gap
tree The vector = (qo, - - ., qn), Whereg; is the number of gap trees on level
is called thegap vectoiof the treeT".

See Figure 6.5.6 for an example of the definition. Invariérs.@) implies that
there is at most one gap tree on every level. If there are tyatrgas on level
[we can move the sibling tree of one of the gap trees to fill thewogap tree,
reducing the number of blocked codes by at least one (seed~&6.5). The
following lemma states that there is indeed an equivalemteden having a
minimal number of gap trees and having a minimum number afked codes.

Lemma 6.24 LetT be a code tree for requests vectarThenT has at most one
gap tree on every level if and onlyif has a minimum number of blocked codes.

6.5. Online CA 135

Gap trees
(a) Gap trees—maximal subtrees of unblocked codes

of gap trees:

q= (27 17 07 0) - gap vector
(b) Gap vector

Figure 6.5.6: Definition of gap trees and gap vector

136 Chapter 6. OVSF Code Assignment

Proof. Supposé’ has a minimum number of blocked codesTlhad two gap
treesT,, T, on levell, then we could move the codes in sibling tig of v into
T,, which would save at least one blocked code (the parentwduld become
unblocked), a contradiction.

Now suppose thdl’ has at most one gap tree on every level. We will show
that this property uniquely defines the gap vector for thegivequest vector
o. Then we show that all code assignments with the same gaprveate the
same number of blocked codes. The two statements togettres fire second
implication.

For the first statement observe that the free bandwidth dgpzfc” can be
expressed as

h
cap= Y ¢2' .
i=0

As g; < 1, the gap vector is the binary representation of the numberacal
therefore the gap vectaris uniquely defined by for trees with at most one gap
tree per level. For the second statement note that the gaprdstermines also
the number of blocked codes:

#blocked codes= (2! — qu (21 —

=0

Thus, every tree for requestswith at most one gap tree at every level has the
same number of blocked codes. O

Now we are ready to define the algorith#iya, (Algorithm 7). As we will
show, on insertionsglgap Never needs any extra reassignments.

Algorithm 7 : Algorithm Agap
invariant: The number of blocked codes is minimum.

Insert:

Assign the new code into the smallest gap tree where it fits.

Delete

delete code from tree

if deletion creates a second gap tree on some lineai
move one of their sibling subtrees into the second gap tree
Treat all newly created second gap trees on higher levelssigely.

end

6.5. Online CA 137

Figure 6.5.7: Two gap trees on a lower level thé@nviolate the minimum chosen
height of the gap tree.

Lemma 6.25 The algorithmAg,, has always a gap tree of sufficient height to
assign a code on levéland at every step the number of gap trees at every level
is at most one.

Proof. We know that there is sufficient capacity to serve the requestcap >
2!, We also know thatap = > ¢;2". Sinceq; < 1 for all 7, there exists a gap
tree on levelj > 1.

Next, consider an insertion into the smallest gap tree dafll&where the
code fits. New gap trees can occur only on leyels< j < I’ and only within
the gap tree on levél. Also, at most one new gap tree can occur on every level.
Suppose that after creating a gap tree on lg¢yele have more than one gap tree
on this level. Then, sincg < I, we would assign the code into this smaller
gap tree, which contradicts our assumption (Figure 6.5Therefore, after an
insertion there is at most one gap tree on every level.

Consider now a deletion of a code. The nodes of the subtreleabfcbde
become unblocked, i.e., they belong to some gap tree. At ameshew gap tree
can occur in the deletion operation (and some gap trees nsapiar). Thus,
when the newly created gap tree is the second one on the Vesdilll the gap
trees and then we recursively handle the newly created gamtr a higher level.
In this way the gap trees are moved up. Because we cannot\wevgap trees
on levelh — 1, we end up with a tree with at most one gap tree on each lével.

The result shows that the algorithm is optimal for inseiamly. It does
not need any extra code movements, contrary to the compagtsentation al-
gorithm. Similarly to the compact representation alganittthis algorithm is

138 Chapter 6. OVSF Code Assignment

1.DELETE <+— 2.ASSIGN

'

N/4 codes N/4 codes

Figure 6.5.8: Worst case number of movements for algorithga.

Q(log N)-competitive.
Theorem 6.26 Algorithm Agap is Q(h)-competitive.

Proof. The proof is basically identical with the proof of Theorer@®. O

The algorithmAga, has even a very bad worst case number of code move-
ments. Consider the four subtrees on level 2, where the first one ha¥’/4
leaf codes inserted, its sibling has a code on Iével 2 inserted and the third
subtree has agailV/4 leaf codes inserted (Figure 6.5.8). After deletion of the
code on leveh — 2, Agapis forced to moveV/4 codes. This is much worse than
the worst case for the compact representation algorithmeftleeless, it would
be interesting to investigate the best possible upper bthatadan be proved for
the competitive ratio oflgap

6.5.4 Resource augmented online-algorithm

In this section we give the sketch of a resource augmentéadesstrategy2-gap
see also Definition 2.1. In the case of the OVSF online codgrasent problem
the resource is the total available bandwidth. The stra?eggpuses a tre@” of
bandwidth2b to accommodate codes whose total bandwidth By the nature
of the code assignment we cannot add a smaller amount of@uhlitesource.
2-gapuses only an amortized constant number of reassignmenisgegtion or
deletion.

Algorithm 2-gapis similar to the compact representation algorithm of Sec-
tion 6.5.1 (insisting on the ordering of codes accordingh®irtlevel, Invari-
ant (6.5.1)), only that it allows for up to 2 gaps at each lévghstead of only
one for aligning), to the right of the assigned coded oithe algorithm for in-
serting a code at levélis to place it at the leftmost gap 6fIf no such gap exists,
we reassign the leftmost code of the next higher lévell, creating 2 gaps (one
of them is filled immediately by the new code) @t We repeat this procedure

6.6. Open Problems 139

toward the root. We reject an insertion if the nominal bardiiwvb is exceeded.
For deleting a code on level/ we move the rightmost code on lewginto the

positionc, keeping all codes at levélto the left of the gaps of. If this results
in 3 consecutive gaps, we reassign the rightmost code of level, in effect

replacing two gaps of by one off 4 1. Again we proceed toward the root.

A detailed description of this algorithm can be found in thesis of Gabor
Szabd [120] and in [53]. The following theorem gives a perfance guarantee
for the algorithm:

Theorem 6.27 ([120],[53]) Let o be a sequence of. code insertions and dele-
tions for a code-tree of heiglit, such that at no time the bandwidth is exceeded.
Then the above online-strategy uses a code-tree of hgight and performs at
most2m + 1 code assignments and reassignments.

Corollary 6.28 The above strategy is 4-competitive for resource augmientat
by a factor of 2.

Proof. Any sequence ofn operations contains at least/2 insert operations.
Hence the optimal offline solution needs at leagt assignments, and the above
resource augmented online-algorithm uses at mvast 1 (re-)assignments, lead-
ing to a competitive ratio of. O

6.6 Open Problems

In this chapter we derived a multitude of results. Some opeblpms remain
unanswered.

e Is there a constant approximation algorithm for the ong-stfline CA
problem?

e Can the gap between the lower bound of 1.5 and the upper bdun
for the competitive ratio of the online CA be closed?

e |s there an instance where the optimal general offline glgorhas to re-
assign more than an amortized constant number of codesg®tion or
deletion?

140 Chapter 6. OVSF Code Assignment

Chapter 7

Joint Base Station Scheduling

Sometimes our circuits get shorted
By external interference.

Signals get crossed

And the balance distorted

By internal incoherence.

(Rush - Vital Signs)

7.1 Introduction

In this chapter we consider different combinatorial aspexta problem that
arises in the context of load balancing in time division rets.

The general setting is that users with mobile devices aneddy a set of
base stations. In each time slot (round) of the time divisiaritiplexing each
base station serves at most one user. Traditionally, earhaiassigned to a sin-
gle base station that serves her until she leaves the célédfdse station or until
her demand is satisfied. The amount of data that a user readyeends on the
strength of the signal that she receives from her assignesldiation and on the
interference, i.e., all signal power that she receives fodner base stations. In
[43], Das et al. propose a novel approach: Clusters of batierss jointly decide
which users they serve in which round in order to increaseortperformance.
Intuitively, this approach increases throughput, whendoheround neighbor-
ing base stations try to serve pairs of users such that theahuterference is
low. We turn this approach into a discrete scheduling prokile one and two
dimensions (see Figure 7.1.1), the Joint Base Station Stihggroblem (JBS).

141

142 Chapter 7. Joint Base Station Scheduling

(a) A possible situation in some time slot (round). Base sta-
tion by serves usets, bs serves useng. Usersus, uq4 and

us are blocked and cannot be served. Base statiazannot
serveu; because this would create interference.at

OUI,,,,@I,,Q%,OUSOUA)@ ,,,,,,, s p3 Y6
—>

(b) Arrow representation of (a).

(c) A possible situation in some time slot in the 2D
case. Usersio, uq,u7 anduio are served. Base
stationbs cannot serve user;, because this would
create interference at; as indicated by the dashed
circle.

Figure 7.1.1: The JBS-problem in one and two dimensions.

7.1. Introduction 143

In one dimension (see Figure 7.1.1(a)) we are given a seuskrs as points
{u1,...,u,} on aline and we are given positiofs, . .., b, } of m base sta-
tions. Note that such a setting could correspond to a seemdrere the base
stations and users are located along a straight road. In odelnwhen a base
stationb; serves a usei;, this creates interference for other users in an interval
of length2|b; — u;| around the midpoink;. In any round each base station can
serve at most one user such that at the position of this useg th no interfer-
ence from any other base station. The goal is to serve als usas few rounds
as possible. In two dimensions users and base stationspeseated as points
in the plane. When base statibn serves uset; this creates interference in a
disk with radius||b; — u;||2 and centeb; (see Figure 7.1.1(c)).

The one-dimensional problem is closely related to intesealeduling prob-
lems, except that the particular way how interference dpsrigads to directed
intervals (arrows). For these, we allow their tails to istat (intersecting tails
correspond to interference that does not affect the usatedieads of the ar-
rows). We present results on this special interval scheduydroblem. Similarly,
the problem is related to interval graphs, except that we leawnflict graphs of
arrows together with the conflict rules defined by the interfiee &rrow graphg.

7.1.1 Related Work

Das et al. [43] propose an involved model for load balanciveg takes into ac-
count different fading effects and calculates the resglsignal to noise ratios at
the users for different schedules. In each round only a sabsdl base stations
is used in order to keep the interference low. The decisionttnh base stations
to use is taken by a central authority. The search for thisedlib formulated as
a (nontrivial) optimization problem that is solved by coetel enumeration and
that assumes complete knowledge of the channel conditibhs.authors per-
form simulations on a hexagonal grid, propose other algor#, and reach the
conclusion that the approach has the potential to incrémeaghput.

There is a rich literature on interval scheduling and s&eagbroblems (see
[54, 118] and the references given therein for an overvie@ur problem is
more similar to a setting with several machines where ondgstaminimize the
number of machines required to schedule all intervals. Aieerof this prob-
lem where intervals have to be scheduled within given timedews is studied
in [30]. Inapproximability results for the variant with asdrete set of starting
times for each interval are presented in [28].

144 Chapter 7. Joint Base Station Scheduling

7.1.2 Model and Notation

In this section we define the problems of interest. Our mode&lomputation

is the real RAM machine. The operands involved (positionghenline or in
the plane) could be restricted also to rational numbersweutise real operands
to preserve the geometric properties of interval and disgréections. In the
one-dimensional case we are given a Bet= {by,...,b,} C R of base
station positions and a sét = {u,...,u,} C R of user positions on the
line in left-to-right order. Conceptually, it is more comient to think of the
interference region that is caused by some base stéatiserving a uset; as an
interference arrowof length2|b; — ;| with midpointd; pointing to the user, as
shown in Figure 7.1.1(b). The interference arrow for the pai, b;) has its head
atu; and its midpoint ab;. We denote the set of all arrows resulting from pairs
P C U x Bby A(P). Ifitis clear from the context, we call the interference
arrows justarrows If more than one user is scheduled in the same round then
each of them must not get any interference from any other stasien. Thus,
two arrows areompatiblef no head is contained in the other arrow; otherwise,
we say that they are iconflict Formally, the head; of the arrow for(u;, by)

is contained in the arrow fofu;, b;) if w; is contained in the closed interval
[br — |uj — by, by + |u; — br]]. If we want to emphasize which user is affected by
the interference from another transmission, we use the ldooking i.e., arrow

a; blocks arrows; if a;'s head is contained ia;.

As part of the input we are given only the base station andpsgtions. The
arrows that show which base station serves which user ateptre solution.
For each user we have to decide from which base station shexvisds This
corresponds to a selection of an arrow for her. Furthermweehave to decide
in which round each selected arrow is scheduled under tleecsidstraint that all
arrows in one round must be compatible. For this purposedh@ugh to label
the arrows with colors that represent the rounds.

For the two-dimensional JBS problem we have positiong3randinterfer-
ence disksi(b;, u;) with centerb; and radiug|b; — ;|2 instead of arrows. We
denote the set of interference disks for the user basexstpéirs from a seP
by D(P). Two interference disks are in conflict if the user who is sdrisy one
of the disks is contained in the other disk; otherwise, theycmmpatible. The
problems can now be stated as follows:

1D-JBS

Input: User positionsU = {uy,...,u,} C R and base station positions
B={b1,...,bm} CR.

7.1. Introduction 145

Output: A set P of n user base-station pairs such that each user is in exactly
one pair, and a coloring' : A(P) — N of the setA(P) of corresponding
arrows such that any two arrows, a; € A(P), a; # a;j, with C(a;) =
C(a;) are compatible.

Objective: Minimize the number of colors used.

2D-JBS

Input: User positionsU = {us,...,u,} C R? and base station positions
B={b,...,by} C R%

Output: A setP of n user base-station pairs such that each user is in exactly one
pair, and a coloring’ : D(P) — N of the setD(P) of corresponding disks
such that any two disk$;, d; € D(P), d; # d;, with C(d;) = C(d;) are
compatible.

Objective: Minimize the number of colors used.

For simplicity, we will write ¢; instead ofC(a;) in the rest of the chapter.
From the problem definitions above it is clear that both the & the 2D-JBS
problems consist of aelection problenand acoloring problem In the selection
problem we want to select one base station for each user mauway that the
arrows (disks) corresponding to the resulting Bedf user base-station pairs can
be colored with as few colors as possible. We call a seledtideasibleif it
contains exactly one user base-station pair for each us¢ermining the cost of
a selection is then the coloring problem. This can also b&edeas a problem
in its own right, where we no longer make any assumption on tienset of
arrows (for the 1D problem) is produced. The conflict grapi¥) of a set4
of arrows is the graph in which every node corresponds to ienweaind there is
an edge between two nodes if the corresponding arrows amniiiat. We call
such conflict graphs of arrovesrow graphs Thearrow graph coloring problem
asks for a proper coloring of such a graph. It is similar irrispd the coloring
of interval graphs. As we will see in Section 7.2.1, the argnaph coloring
problem can be solved in tim@(n logn). We finish this section with a simple
lemma that leads to a definition:

Lemma 7.1 For each 1D-JBS instance there is an optimal solution in Wigiach
user is served either by the closest base station to heridfy the closest base
station to her right.

Proof. This follows by a simple exchange argument: Take any optsukltion
that does not have this form. Then exchange the arrow wheserdsinot served

146 Chapter 7. Joint Base Station Scheduling

by the closest base station in some round against the aroomtfre closest base
station on the same side (which must be idle in that round)rt8hing an arrow

without moving its head can only resolve conflicts. Thustehg also an optimal

solution with the claimed property. O

The two possible arrows by which a user can be served acgptdithis
lemma are callediser arrows It follows that for a feasible selection one has to
choose one user arrow from each pair of user arrows.

7.1.3 Summary of Results

The work presented in this chapter was done in collaboratitm Thomas Er-
lebach, Riko Jacob, Mat(s Mif&ak, Gabor Szabb and Peter Widmayer. Extended
abstracts of these results are published in [52] and [58] hare and will be pre-
sented with different focus in the theses of Gabor SzaB6][and Mat(s Mihal
ak.

We prove that arrow graphs are perfect and can be coloredalbyi in
O(nlogn) time. For the one-dimensional JBS problem with evenly sp&eese
stations we give a polynomial-time dynamic programmingoetym. For an-
other special case of the one-dimensional JBS problem,esiensers must be
served by3 base stations i rounds, we give a polynomial-time optimal algo-
rithm. As a last variant we consider the decision problem loéthier an instance
can be served ik rounds. We derive a 2-approximation algorithm for JBS based
on an LP rounding. In the two-dimensional case deciding ndradll users can be
served in one round is doable in polynomial time. The gerbalBS problem
is shown to be NP-complete. Finally, we analyze an approt@malgorithm for
a constrained version of the 2D-JBS problem, and presergrloaunds on the
quality of some natural greedy algorithms for the generattlimensional JBS
problem.

My main contribution concerns the one-dimensional problenparticular,
the algorithm for evenly spaced base stations and the asalfythe graph class
of arrow graphs For this reason, the emphasis in this chapter is on 1D-JBS.

7.2. 1D-JBS 147

7.2 1D-JBS

As mentioned earlier, solving the 1D-JBS problem requiedsciing an arrow for
each user and coloring the resulting arrow graph with as felars as possible.
To understand when a selection of arrows leads to an arrophgréth small
chromatic number, we first study the properties of arrow lasap relation to
existing graph classes. Next we analyze special cases dBHYhat are solvable
in polynomial time. At the end of this section we present aaiyit program
that solves the decision version of the 1D-JBS problem i td(*), wherek
is the number of rounds, and we shove-approximation algorithm. The big
open problem remains the complexity of the general 1D-JB®Ipm: Is it NP-
complete or is it polynomially solvable?

7.2.1 Relation to Other Graph Classes

In order to gain a better understanding of arrow graphs, ve¢ diiscuss their
relationship to other known graph classedle refer to [20, 119] for definitions
and further information about the graph classes mentiaméfusi following.

First, it is easy to see that arrow graphs are a superclasgevfal graphs:
Any interval graph can be represented as an arrow graph Walraws pointing
in the same direction.

An arrow graph can be represented as the intersection gifaphrmgles on
two horizontal linegy = 0 andy = 1: Simply represent an arrow with left end-
point/ and right endpoint that points to the right (left) as a triangle with corners
(£,0), (r,0), and(r, 1) (with corners(r, 1), (¢,1), and(¢, 0) respectively). With
this representation two triangles intersect if and onljé& torresponding arrows
are in conflict, see Figure 7.2.1 for an example. Intersedi@phs of triangles
with endpoints on two parallel lines are known in the literatas P! graphs.
They are a subclass of trapezoid graphs, which are the étttsa graphs of
trapezoids that have two sides on two fixed parallel lineap&roid graphs are in
turn a subclass of co-comparability graphs, a well-knowssbf perfect graphs.
Therefore, the containment in these known classes of gagfaphs implies the
perfectness of arrow graphs. Consequently, the size of amoax clique in an
arrow graph equals its chromatic number.

As arrow graphs are a subclass of trapezoid graphs, we cdy kappyvn

1The connections between arrow graphs and known graph slasst as Pl graphs, trapezoid
graphs, co-comparability graphs, AT-free graphs, and lyediordal graphs were observed by EKki
Kohler, Jeremy Spinrad, Ross McConnell, and R. Srithatdheaseminar “Robust and Approxima-
tive Algorithms on Particular Graph Classes”, held in DagkCastle during May 24-28, 2004.

148 Chapter 7. Joint Base Station Scheduling

Figure 7.2.1: An arrow graph (top) and its representation as & Rjraph (bot-
tom).

efficient algorithms for trapezoid graphs to arrow graphglsifer et al. [58]
give algorithms with running-timé&(nlogn) for chromatic number, weighted
independent set, weighted clique, and clique cover in #aiplegraphs withn
nodes, provided that the trapezoid representation is giMea coloring algorithm
provided in [58] is similar to the followingreedy coloringalgorithm.

We assume for simplicity that the arrovds= {aq,...,a,} are givenin left-
to-right order of their left endpoints. This sorting canaalse seen as the first
step of the greedy coloring algorithm. The algorithm scéesarrows from left
to right in this sorted order. In stept checks whether there are colors that have
already been used and that can be assigned tathout creating a conflict. If
there are such candidate colors, it considers, for each@alohe, the rightmost
right endpointr. among the arrows that have been assigned cofar far. To
a; is assigned the colarfor which r. is rightmost (breaking ties arbitrarily). If
there is no candidate color, the algorithm assigns a new tolg.

We show that this greedy algorithm produces an optimal aaydyy showing
that any optimal solution can be transformed into the sofuproduced by the
algorithm.

Lemma 7.2 LetC be an optimal coloring for a set of arrows = {ay, ..., a,}.
The coloringC' can be transformed into the coloring produced by the greedy
algorithm without introducing new colors.

Proof. We show the lemma by induction on the index of the arrows. Tdeg-
tion hypothesis isThere exists an optimal coloring that agrees with the greedy
coloring up to arrowk — 1. The induction start is trivial. In théth step let
C = (ey,...,c,) be such an optimal coloring and &t = (hy, ..., h,) be the
greedy coloring, i.e., we have = ¢1,hy = ¢o, ..., hx_1 = cx—1. We consider

7.2. 1D-JBS 149

the coloringC’ = (¢}, ...,) thatis obtained frond’ by exchanging the colors
¢ andhy, for the arrowsuy, . . ., a,,. More precisely, we define

ci, ifi<kore & {ck hi}
¢ =< hy, ifi>kande =cp
Ck, if 2 >k andc; = hy,.

By definition we have;], = h;, and it remains to show that' is a proper coloring
and, therefore, the induction hypothesis is also truekfolf ¢, = h; we have
C" = C, which is a proper coloring. Otherwise, we have to show tHgiairs
of arrowsa;, a; that are in conflict receive different colorsd, i.e., ¢ # c;.. If
i,j < kork < i, this is obvious by the fact that is a coloring. Hence, we
assume < k < j; the casg = k is implied by H being a proper coloring.

If hy is a new color, i.e., different from all af;, . . ., ¢, _1, then, because of
the greedy algorithm, alsg, is a new color. Hence, it is impossible that we have
c; = cj.

Now assume for a contradiction that we indeed have c; = ¢ and the
arrowsa; anda; are in conflict. By the ordering of the arrows we know that
a; anday, overlap. Observe that € {ci, hi} because” is a coloring. This
leaves us with two cases:

Case 1lc = ¢;: Since(C is a coloring, the arrows,; anda; are compatible,
i.e. a; is directed left andi, is directed right. Such a configuration is depicted
in Figure 7.2.2. By the definition of the greedy algorithm, kvew thath,, is a
color of a compatible arrow. Sinde, # ¢, = ¢;, there must exist an arrowy,

[< k, that ends not beforg and has colohy, i.e.¢; = hy, (anda; is compatible
with a;). Sincea; is in conflict witha; (the head ofi; is within a;), there is also
a conflict betweenm; anda;. We haver, = ci, implying c; = hi, hence we get
the contradictior:; = hj, = ¢; in the optimal coloring’'.

Case 2c = hy,: Becausdd is a coloringa; anda;, have to be compatible. Since
a; ends before,, and is in conflict witha;, alsoa; is in conflict witha,,. Because
cg = hi, we know by definition of”” thatc; = ¢, hence there is a conflict iff,

a contradiction. |

The running time of the algorithm depends on the time therdlgo spends
in every step on identifying an allowed color that was pragig assigned to an
arrow with the rightmost right endpoint. By maintaining twalanced search
trees (one tree for each direction of arrows) storing thetmeaently colored ar-
rows of the used colors (one arrow per color) in the ordereiftight endpoints,
we can implement this operation in logarithmic time. Togetlith Lemma 7.2
we get the following theorem.

150 Chapter 7. Joint Base Station Scheduling

a
- l
a;
-
aj
——
a;
-
I EE——
Qg

1<k<jy

Figure 7.2.2: Possible configuration for the two cases. Dotted lines mbah t
the arrows could be extended

Theorem 7.3 The greedy algorithm optimally colors a given set of arrows
{ai,...,a,} in O(nlogn) time.

We sum up the discussed properties of arrow graphs in th@fisly theorem.

Theorem 7.4 Arrow graphs are perfect. In arrow graphs chromatic number,
weighted independent set, clique cover, and weighted elan be solved in
timeO(nlogn).

One can also show that arrow graphs are AT-free (i.e., do ootan an
asteroidal triple) and weakly chordal.

7.2.2 1D-JBS with Evenly Spaced Base Stations

As already mentioned it is still open whether 1D-JBS is NRiptete or not. In
order to explore the complexity boundary for the problem w&rshed for sim-
pler variants, for which there is a polynomial algorithm dodharder variants
that are NP-complete. An obvious harder variant is 2D-JBl§iclvwe prove
to be NP-complete in Section 7.3.1. A simpler variant is tBeJBS problem,

in which all base stations are evenly spaced, such that ighhering base sta-
tions have the same distan¢é&rom each other. Additionally, we assume that the
leftmost user is not further apart than distandeom the leftmost base station,
similarly for the rightmost user. We call such users thatfarther thand apart
from any base statiofar out users

Them base stations partition the line into a §eg, . . . , v,,, } of intervals We
assume that the base stations are given in left to right ofeerthis setting we
can conclude from Lemma 7.1 that no interference arrow setds more than
two intervals, i.e., the influence of a base station is lichii@ its direct left and

7.2. 1D-JBS 151

right neighboring base station. A solution (selection obwss) is considered
non-crossingf there are no two usersandw in the same interval such thats
to the left ofw, u is served from the right, and from the left, in two different
rounds.

Lemma 7.5 For instances of 1D-JBS with evenly spaced base statioas th
always an optimal solution that is non-crossing.

Proof. Consider an optimal solutios that is not non-crossing. We show that
such a solution can be transformed into another optimalisoly’ that is non-
crossing. Let, andw be two users such thatandw are in the same interval,

is to the left ofw, andu is served by the right base statipnin roundt; by arrow

a, andw is served by the left base statibnin roundt, by arrowa;; obviously,

t1 # to. We can modifys such that in round; base statio,. servesw and in

to base statiom; servesu. This new solution is still feasible because first of all
both the left and the right involved arrows anda,- have become shorter. This
implies that bothu; anda,. can only block fewer users. On the other hand, the
head ofa; has moved left and the head @f has moved right. It is impossible
that they are blocked now because of this movemerit; this could only happen

if there were some other arrows containimgthe new head od,.. This arrow
cannot come from the left, because then it would have bloalggthe old arrow.

It cannot come frond,. becausé,. is busy. It cannot come from a base station to
the right ofb,., because such arrows do not reaahy point to the left ob,.. For

to the reasoning is symmetric. O

The selection of arrows in any non-crossing solution candmepdetely char-
acterized by a sequencef— 1 division points such that thé'” division point
specifies the index of the last user that is served from thenehe i*" interval.
(The case where all users in tifé interval are served from the right is handled
by choosing th&'” division point as the index of the rightmost user to the left
of the interval, or as 0 if no such user exists.) A brute-fapproach could now
enumerate over all possibie(n™!) division point sequencesljfs and color
the selection of arrows corresponding to each dps with teedyralgorithm from
Section 7.2.1.

Dynamic Programming

We can solve the 1D-JBS problem with evenly spaced basemssatiore effi-
ciently by a dynamic programming algorithm that runs in palgnial time. The

2Here we use the assumption that the rightmost user is ne@fautihe right of the rightmost base
station tharnd, and that the base stations are evenly spaced.

152 Chapter 7. Joint Base Station Scheduling

division point di—1 ' di ' dip
VA AN 4
K XK
basestation bi—1 bs bir1 bito
interval Vi—1 ' ovy D Vi

Xi(di—1,d;) c(i,d;i—1,d;, diyq)

Figure 7.2.3:Dynamic programming approach

idea of the algorithm is to consider the base stations argittreuintervals in left-
to-right order. We consider the cogt(d;_1, d;) of an optimal solution up to the
ith base station conditioned on the position of the divisiom{sd; _; andd; in
the intervals; 1 andv;, respectively, see Figure 7.2.3.

Definition 7.6 We denote by («, 5) the minimum number of colors needed to
serve users; to ug using the base statiorbs to b; under the condition that base
stationb; serves exactly usets,; to ug and ignoring the usersg, 1, ..., uy.

Let A(v;) denote the set of potential division points for intervali.e., the
set of the indices of users in and of the rightmost user to the left of (or O
if no such user exists). The valugs(do, d;) for dy = 0 (all users to the left
of b must be served b¥; in any solution) andl; € A(v;) can be computed
directly by using the greedy coloring algorithm. For 1, we compute the val-
UeSXi+1(d,‘,d,‘+1) ford; e A(U,‘), di+1 S A(Ui+1> from the table fOI’X,*(-,)
If we additionally fix a division point/;_; for intervalv;_;, we know exactly
which selected arrows intersect intervalregardless of the choice of other di-
vision points. Observe that this only holds for evenly splloase stations and
no far out users. For this selection, we can determine wighgireedy color-
ing algorithm how many colors are needed to color the arraversectingy;.
Let us call this numbeet(i,d;—1,d;,d;+1) for interval v; and division points
d;—1,d; andd; 1. We also know how many colors we need to color the arrows
intersecting intervals, to v;_;. For a fixed choice of division point$_1, d;
andd,;, we can combine the two colorings correspondingt¢d;_1,d;) and
c(i,d;—1,d;,d;+1): Both of these colorings color all arrows of base stafign
and these arrows must all have different colors in both aoys: No other ar-
rows are colored by both colorings, 89(d;—1, d;) andc(i, d;—1, d;, d;+1) agree
up to redefinition of colors. We can choose the best divisimintpl;_; and get

Xit+1(diydiy1) = d-,lg}\i&,l) max {x;(di—1,d;), c(i,di—1,d;,diy1)}

The running time is dominated by the calculation of tfig values. There are
O(m - n®) such values, and each of them can be computed in @relog n)

7.2. 1D-JBS 153

using the greedy coloring algorithm. The optimal solutiam de found in the
usual way by tracing back where the minimum was achieved fxoniz, n).
Here thex is chosen among the users of the interval before the lastdtasen
such thaty,,, (z, n) is minimum. For the traceback it is necessary to store in the
computation of they values where the minimum was achieved. The traceback
yields a sequence of division points that defines the selecfiarrows that gives
the optimal schedule. Altogether, we have shown the folgwtheorem:

Theorem 7.7 The base station scheduling problem for evenly spaced hiase s
tions can be solved in tim@(m - n* logn) by dynamic programming.

Note that the running time can also be boundedgyn - uZ,, . 10g Umax),
whereu,,.x is the maximum number of users in one interval.

7.2.3 3k Users,3 Base Stations ink Rounds

In the last section we made the restriction that the inputtmatscontain far out
users. One could ask whether the complexity of the problech#nged when
far out users are present. In order to explore this dire@ibit we define a (very
special) variant here, in which far out users are presemnstiithe problem can
be solved in polynomial time: We are giv8rbase stations;, b, andbs, and3k
users withk far out users among them. Far out users are the users to tiod lef
by or to the right ofbs whose interference arrows contain We want to find out
whether the users can be served irounds or not.

This special setting forces every base station to serverdruseery round if
there is ak-schedule. A far out user has to be served by its unique neigit
base station. Since the arrows of far out users comtaiall users betweeb;
andb, are blocked when the far out userdpfare served. Hence they have to be
served when the far out usersigfare served. Based on this observation every
round contains one of the following types of arrow triplets:

Type 1: b3 serves afar out usér; serves a user betweénandb,, andb, serves
a user that is not a far out user.

Type 2: b; serves a far out usér; serves a user betweénandbs, andbs serves
a user that is not a far out user.

For every user, it is uniquely determined whether it will leeved in a round of
Type 1 or Type 2.

We can schedule the users in the following way. keandks be the number
of far out users ob; andbs respectively witht = k; + k3. First, we serve

154 Chapter 7. Joint Base Station Scheduling

Uy Uz U3 Ug U5 Ue U7 US UY U0 U1 UL2
: bi: C o ba b :
round 1 : L e ——
round 2 >
round 3 —

Figure 7.2.4:Far out usersuyg, u1; anduy, are served bys in roundsl, 2 and
3, respectively. The arrows represent the Type 1 rounds.ddsens andug will
be scheduled in a round of Type 2 (not shown).

the far out users obs in roundsl, ..., ks in the order of increasing distance
from b3. Next, we match the resulting arrows in a best fit manner witbves
produced byb, serving users between andb, (see Figure 7.2.4). For every
round: = 1,2, ..., ks, we find the user closest tg that can be served together
with the corresponding far out user servedbyand schedule the corresponding
transmission in that round. Using this selection stratégydize of the arrows
of by grows with the number of the round in which they are scheduleiv we
have to serve the remainirtg users (that are not far out usershef with b;. We
use a best fit approach again, i.e., for every rourd1, 2, ..., ks, we schedule
the user with maximum distance froba (longest arrow) among the remaining
users. The schedule for the remaining users that form thedsoaf Type 2 can
be done similarly, starting with the far out usershof

Theorem 7.8 For the 1D-JBS problem with base stations an@k users with
k far out users deciding whether/aschedule exists can be done(in logn)
time.

Proof. The proof can be found in [52] and will appear in the thesis Gfths
Mihatak. The proof shows that the greedy scheduling strategy fudh ak-
schedule in tim&(n log n) if one exists. O

7.2.4 Exact Algorithm for the %k-Decision Problem

In this section we present an exact algorithm for the decisariantk-1D-JBS

of the 1D-JBS problem: For givelhand an instance of 1D-JBS, decide whether
all users can be served in at mastounds. We present an algorithm for this
problem that runs i (m - n?**! logn) time.

We use the result from Section 7.2.1 that arrow graphs afegieiThus the
size of the maximum clique of an arrow graph equals its chtmmamber.

7.2. 1D-JBS 155

The idea of the algorithm, which we call;,_jgs, is to divide the problem
into subproblems, one for each base station, and then centiiénpartial solu-
tions to a global one.

For base statioh;, the corresponding subproblesf considers only arrows
that intersect; and arrows for which the alternative user arfantersects,.
Call this set of arrows1;. We call S;_; andS; ., neighborsof S;. A solution
to S; consists of a feasible selection of arrows fretnof cost no more tha,
i.e. the selection can be colored with at méstolors. To find all such solu-
tions we enumerate all possible selections that can leaddtuéon ink rounds.
For S; we store all such solutiongs?, . .., s/} in a tableT;. We only need to
consider selections in which at mast arrows intersect the base statign All
other selections need more thamounds, because they must contain more than
k arrows pointing in the same directionigt Therefore, the number of entries
of T is bounded bﬁ?io () = O(n*"). We need)(nlogn) time to evaluate
a single selection with the greedy coloring algorithm. S&das that cannot be
colored with at mosk colors are marked as irrelevant and ignored in the rest
of the algorithm. We build up the global solution by choosinget of feasible
selectionssy, . . ., s,,, in which all neighbors are compatible, i.e. they agree on
the selection of common arrows. It is easy to see that in sugibkzal solution
all subsolutions are pairwise compatible.

We can find such a set of compatible neighbors by going throluiglhables
in left-to-right order and marking every solution in eacbléaasvalid if there
is a compatible, valid solution in the table of its left ndigh, or asinvalid oth-
erwise. A solutions; marked as valid in tabl&; thus indicates that there are
solutionssy, ..., s;—1 in T1,...,T;_1 that are compatible with it and pairwise
compatible. In the leftmost tablE,, every feasible solution is marked as valid.
When the marking has been done for the tables of base stdtions,b;_1,
we can perform the marking in the tatiig for b; in time O(n?**!) as follows.
First, we go through all entries of the taldle_; and, for each such entry, in time
O(n) discard the part of the selection affecting pairs of usewesrthat intersect
only b;_1 but notb;, and enter the remaining selection into an intermediate tab
T;—1,. The tableT;_, ; stores entries for all selections of arrows from pairs of
user arrows intersecting both_; andb;. An entry in7;_; ; is marked as valid if
at least one valid entry frof;_; has given rise to the entry. Then, the entries of
T; are considered one by one, and for each such entiye algorithm looks up
in time O(n) the unique entry ifT;_ ; that is compatible witls; to see whether
it is marked as valid or not, and marks the entryiraccordingly. If in the end
the tableT,,, contains a solution marked as valid, a set of pairwise coitlpat

3For every user there are only two user arrows that we needrsider (Lemma 7.1). If we
consider one of them, the other one is #iernative user arrow

156 Chapter 7. Joint Base Station Scheduling

b; bit1
1 ;
—> 2
- 4
3 : -
<—f 5

\J

Figure 7.2.5: Arrow types intersecting at a poiptbetween base stationsand
bi+1 .

solutions from all tables exists and can be retraced easily.

The overall running time of the algorithmd(m - n2**+1 - logn). There is a
solution tok-1D-JBS if and only if the algorithm finds such a set of complati
neighbors.

Lemma 7.9 There exists a solution tb-1D-JBS if and only ifA;_ ;s finds a
set of pairwise compatible solutions.

Proof. (=) Every arrow intersects at least one base station. A glolhatiso di-
rectly provides us with a set of compatible subsolutiBgs, = {s™", ..., soPt1.
Since the global solution has cost at mbsso have the solutions of the subprob-
lems. Hence, the created entries will appear in the tabldgeatlgorithm and will
be considered and marked as valid. Thus, there is at leastetrod compatible
solutions that is discovered by the algorithm.

(<) We have to show that the global solution constructed frompémtial
ones has cost at mokt Suppose for a contradiction that there is a ppinthere
the clique size is bigger thah and therefore bigger than the cliquebat(the
left neighboring base station pj and the clique ab; ., (the right neighboring
base station op). We divide the arrows intersecting poiptinto 5 groups as
in Figure 7.2.5. Arrows of typé (2) have their head betweén andb; ., and
their tail to the left (right) ofb; (b;11). Arrows of type3 (4) have their tall
betweenh; andb;; and their head to the left (right) &f (b;1). Finally, type
5 arrows intersect both; andb;,. For the clique ap to be bigger than that
at b, some arrows not considerediathave to create conflicts. The only such
arrows (considered a@t ., but not atb;) are of type4. Observe that arrows of
typel, 2 and5 are considered both at the table fgrand at the table fob;, ;.

If their presence increases the clique size,athen no type3 arrow can be in
the maximum clique ap (observe that arrows of typand4 are compatible).

7.2. 1D-JBS 157

A type 3 arrows are the only arrows presenpdtut not atb; 1, the clique ap
cannot be bigger than the cliquetat |, a contradiction. O

To sum up, we have shown the following theorem.

Theorem 7.10 Problemk-1D-JBS can be solved iD(m - n**** logn) time.

7.2.5 Approximation Algorithm

In this section we present an approximation algorithm forJES that relies on
the properties of arrow graphs from Theorem 7.4. Aetenote the set of all user
arrows of the given instance of 1D-JBS. From the perfectokasrow graphs it
follows that it is equivalent to ask for a feasible selectibp, € A minimizing
the chromatic number of its arrow graph As.1) (among all feasible selections)
and to ask for a feasible selectioh,.; minimizing the maximum clique size
of G(4s1) (among all feasible selections). Exploiting this equinake, we can
express the 1D-JBS problem as an integer linear programlas/$o We intro-
duce two indicator variablels andr; for every user that indicate whether she
is served by the left or by the right base station, i.e. if tkeris left or right
user arrow is selected. Moreover, we ensure by the conréiat no cliques in
G(Asa) are large and that each user is served. The ILP formulatasfigllows:

min k (7.2.2)

st. > Li+ Y ri<k VcliquesCinG(A) (7.2.2)

LEC reC
L+r=1, Yie{l,... U} (7.2.3)
lir €{0,1}, Vie{l,...,|U|} (7.2.4)
keN (7.2.5)

The natural LP relaxation is obtained by allowihgr; € [0,1] andk > 0.
Given a solution to this relaxation, we can use a roundingriggie to get an
assignment of users to base stations that has cost at mast tfwé optimum,
i.e., we obtain a 2-approximation algorithm. Let us dengt®pt the optimum
number of colors needed to serve all users. Toyw@r> &, because the optimum
integer solution is a feasible fractional solution. Constnow a feasible solution
from a solution to the relaxed problem by rounding= |I; + 0.5],r; :=1—1;.
Before the rounding the size of every (fractional) cliquatisnostk; afterwards

158 Chapter 7. Joint Base Station Scheduling

Il :
L, =05 =05

b u b, ‘
,,,,,,,, P

bl T br
,,,,,,,, L

Inil‘ »O< In71
by u

Figure 7.2.6: Lower bound example for the 2-approximation ratio of the LP
relaxation technique.

the size can double in the worst case. Therefore, the coseabunded solution
is at mosk < 2opt

The factor of 2 is tight for our technique because the gap éetwa frac-
tional and an integral solution can really get arbitrarilyse to 2: In Figure 7.2.6
the cost of an optimal fractional solution is smaller thaa tlost of an optimal
integral solution by a factor arbitrarily close 201n this example, the basic con-
struction/; contains two base statiohsandb,. and one usew in-between. Both
the solution of the ILP and the solution of the LP relaxati@véacostl. I is
constructed recursively by adding fptwo (scaled) copies af; in the tail posi-
tions of the arrows. In this case the cost of the relaxed LP5isind the integral
cost is2. The constructiord,,, aftern recursive steps, is shown at the bottom of
Figure 7.2.6. This construction is achieved by usipgand putting two scaled
1,1 settings in the tail of the arrows fro. The cost of the LP relaxation for

I, is L, whereas the cost of the ILPiis

One issue that needs to be discussed is how the relaxatiomecsolved in
time polynomial inn andm, as there can be an exponential number of con-
straints (7.2.2). (Figure 7.2.7 shows that this can realygen. The potentially
exponential number of maximal cliques in arrow graphsidggtishes them from
interval graphs, which have only a linear number of maxintgjues.) Fortu-
nately, we can still solve such an LP in polynomial time with ellipsoid method

7.2. 1D-JBS 159

Al -
a2

Y

Y

as

A

a4

a’n*l %’
-
Qn

Figure 7.2.7: Example of an arrow graph with an exponential number of maxi-
mum cliques. For every choice of arrows from a compatible pai; 1, as;) we

get a clique of size./2, which is maximum. The arrow graph can arise from a
1D-JBS instance with two base stations in the middle ay®lusers on either
side.

of Khachiyan [79] applied in a setting similar to [67]. Thigthod only requires
a separation oracle that provides us for any valuds, of with a violated con-
straint, if one exists, see also Section 4.6. It is easy telclar a violation of
constraints (7.2.3) and (7.2.4). For constraints (7.2v2) need to check if for
given values of;, r; the maximum weighted clique i6'(A) is smaller thark.
By Theorem 7.4 this can be done in tifién log n). Summarizing, we get the
following theorem:

Theorem 7.11 There is a polynomial-time-approximation algorithm for the
1D-JBS problem.

7.2.6 Different Interference Models

Up to now we have analyzed the discrete interference modetenhe interfer-
ence region has no effect beyond the targeted user. Oneastepds a more
realistic model is to consider the interference regiondpoed by a base station
sending a signal to a user, to span also beyond the targeted/\s call the 1D-
JBS problem using this more realistic interference modehtiodified 1D-JBS
problem. For the 1-dimensional case this can be modeledihy irderference
segmentsvith the user somewhere between the endpoints of this sdgtien
small black circles on the segments in Figure 7.2.8) and &se Istation in the
middle of the segment. The conflict graph of such interfeeesegments is an-
other special case of trapezoid graphs. For an example geeeF7.2.8. The
trapezoid representing the segméntb] (serving usen:) from Figure 7.2.8 is
built using the parallel edgés’, '] (the projection of the segmefat, «] onto the
upper supporting line of the trapezoid) gnd, &’ (the projection of the segment
[u, b] onto the lower supporting line of the trapezoid).

160 Chapter 7. Joint Base Station Scheduling

"

Figure 7.2.8: Example for interference segments.

We also get the trapezoid representation mentioned abave donsider a
segment with a user between its endpoints as two arrowsipgitatthe user one
from left and one from right. Then the triangle transforraatfor arrows (from
Section 7.2.1) results in the trapezoid representatian ffigure 7.2.8. Thus, for
themodified 1D-JBS$ising Theorem 7.11 we have the following result:

Corollary 7.12 There is a polynomial-time-approximation algorithm for the
modified 1D-JBSroblem.

The proofis similar to the proof from Section 7.2.5, excéait instead of arrow
graphs we have another special case of trapezoid graphs.

7.3. 2D-JBS 161

U @@
ANPNC

Figure 7.3.1: A cycle of length 5 in the conflict graph of interference dig&f).
Itis not clear, however, whether an optimal solution to thkestion problem will
ever yield such a conflict graph; a different selection fas timstance yields a
conflict graph with five isolated nodes (right).

7.3 2D-JBS

We now turn to the two-dimensional version 2D-JBS. We firsivglthat the de-
cision variant:-2D-JBS of 2D-JBS is NP-complete. Then we present a constant
factor approximation for a constrained version of it anceflyi discuss lower
bounds for natural algorithms for the general 2D-JBS proble

One could be led to believe that an extension of the apprdiemalgorithm
in Section 7.2.5 should lead to an approximation algoriton2D-JBS. However,
the conflict graph of a set of interference disks is not nexréggerfect: It can
have odd cycles as shown in Figure 7.3.1.

7.3.1 NP-Completeness of the-2D-JBS Problem

In this section we briefly sketch our reduction from the gahgraphk-col-
orability problem [62] to 2D-JBS; the complete proof can berfd in [120]. Our
reduction follows the methodology presented in [66] fortuligk k-colorability.

Given any grapltG, it is possible to construct in polynomial time a corre-
sponding 2D-JBS instance that can be schedulédrounds if and only ifG is
k-colorable. We use an embedding®fnto the plane which allows us to replace
the edges of; with suitable base station chains with several users intasyic
way such that:-colorability is preserved. Our main result is the follogin

Theorem 7.13 Thek-2D-JBS problem in the plane is NP-complete for any fixed
k> 3.

162 Chapter 7. Joint Base Station Scheduling

In the £-2D-JBS instances used in our reduction, the selectionebtse
station serving each user is uniquely defined by the cortgiruc Hence, our
reduction proves that already the coloring step of the 2B8-pBoblem is NP-
complete.

Corollary 7.14 The coloring step of thé-2D-JBS problem is NP-complete for
any fixedk > 3.

7.3.2 Bounded Geometric Constraints

Here, we consider a constrained version of the 2D-JBS pmobl the real
life application of mobile communication networks it is @ftthe case that the
maximum reach of a cell is limited by the maximum transmgtpower. It is
also common sense to consider that base stations cann@dssl@rbitrarily but
a certain minimum distance between them has to be maintaifteeise are the
two geometric constraints that we use in this section. Ngntie¢ base stations
are at least a distana® from each other and have limited power to serve a user,
i.e., every base station can serve only users that are atipgstdistance away
from it. To make sure that under these constraints a feasdblgion exists (i.e.
all users can be served) we limit ourselves to instancesendary user can be
reached by at least one base station. We present a simplélaigachieving an
approximation ratio which only depends on the parameteasid R, ...

Consider the following greedy approadip_.p,..: In the current round the
algorithm repeatedly picks an arbitrary user base-stai@r(w, b), whereu is an
unserved user, such that the transmission fodmu can be added to this round
without creating a conflict. If no such user base-stationgdsts, the next round
starts. The algorithm terminates when all users have begade

The approximation ratio achieved b¥,p_qpp. iS given in the following
analysis. Assume that the algorithm schedules the usérsonnds. Letu be
a user served in rounk, and letb be the base station serving Sinceu was
not served in the previous rountls2, . .., k — 1, we know that in each of these
rounds, at least one of the following is true:

e b serves another usef # u.

e v is contained in an interference digkd’, u') for some uset’ # u that is
served in that round.

e b cannottransmit ta because the disk(b, u) contains another usef that
is served in that round.

7.3. 2D-JBS 163

In any of these cases, a usétris served, and the distance betweeandu’ is at
most2 R, (since every interference disk has radius at nitst,). Therefore,
the disk with radiu® R,,,.x centered at: contains at least users (includingy).
If B’ is the set of base stations that serve thessers in the optimal solution,
these base stations must be located in a disk with regiilys.. centered at.
Since any two base stations are separated by a distadceved know that disks
with radiusA /2 centered at base stations are interior-disjoint. Furtoeenthe
disks with radiusA /2 centered at the base stationsBh are all contained in a
disk with radius3 R,,,.x + A/2 centered at.. Therefore, the following inequality
holds
(3Rmax + A/2)?1 (6Rmax + A)?

(A/2)2m B A?

Hence the optimal solution needs at lelagtB’| rounds. This yields the follow-
ing theorem.

|B'| <

Theorem 7.15 There exists an approximation algorithm with approximatia-

tio (%)2 for 2D-JBS in the setting where any two base stations are at
leastA away from each other and every base station can serve ontg wsthin
distance at mosR ., from it.

7.3.3 General 2D-JBS

In the technical repatt[52] we also discuss lower bounds on three natural greedy
approaches for the general 2D-JBS problem: serve a maxinuumber of users

in each roundrhax-independent-gebr repeatedly choose an interference disk of
an unserved user with minimum radigsr(allest-disk-firgt or repeatedly choose
an interference disk containing the fewest other unsergedsifewest-users-in-
disK. In [52] we prove the following theorem.

Theorem 7.16 There are instancef/, B) of 2D-JBS in general position (i.e.,
with no two users located on the same circle centered at astagen) for which
the maximum-independent-set greedy algorithm, the satalisk-first greedy al-
gorithm, and the fewest-users-in-disk greedy algorithwetegpproximation ratio
Q(logn), wheren = |U/|.

For instances of 2D-JBS that are not in general positionsthallest-disk-
first greedy algorithm can have approximation ratjas shown in Figure 7.3.2.

4Lower bounds for the general 2D-JBS problem will also be éctopMat(s Mihabk’s thesis.

164 Chapter 7. Joint Base Station Scheduling

Figure 7.3.2:Lower bound for smallest-disk-first algorithm.

7.4 Open Problems

In this chapter we analyzed the 1D- and 2D-JBS problems tis#t i the context

of coordinated scheduling in packet data systems. Thed#guns can be split
into a selection and a coloring problem. In the one-dimeraicase, we have
shown that the coloring problem leads to the class of arraplgs, for which we

have discussed its relation to other graph classes andthlysr For the selection
problem we proposed an approach based on LP relaxationavitiding. For the

2D-problem, we have shown its NP-completeness.

The following problems remain still open:

e Is the 1D-JBS problem NP-complete or is there a polynomiagtalgo-
rithm that solves it?

e Are there constant approximation algorithms for the untraimsed 2D-
JBS problem?

Chapter 8

Summary of contributions

In this thesis we have studied algorithmic problems thatlerézed from practi-

cal applications as directly as possible. We were able teldpvheoretical re-

sults with immediate applicability to the original problenThe thesis illustrates
the interaction between theory and practice: We start frgoreatical problem,

build a mathematical model for it that leads to new theoattiriestions and
challenges. The solution to these theory problems thenrhpliciations for the

original problem or even directly leads to a satisfactotyton. In this context,

it has proven crucial to have at one’s disposal the wholelaai spectrum of

algorithmic techniques. The reason for this is that depemndn the type of the
problem different techniques prove to be successful.

The sequential vector packing problem is a good example déanacom-
binatorial problem that arises in practice and necessitaie design of new al-
gorithms. We have developed a bicritefia, 1-)- and a(1, 2)-approximation
algorithm. For this algorithm we use the technique of LPAading and for its
analysis structural properties about the optimal solgtiohn NP-completeness
proof justifies the use of approximation algorithms. Alrg#us approximation
algorithm is readily usable in the original industry segtirHowever, it requires
an LP-solver. In order to stress the practical side even meeeanalyze the
performance of two natural greedy heuristics similar tcsththat were initially
employed to tackle the problem. Our analysis shows thaethesiristics can
produce very bad solutions on some instances. We subgéatitia theoretical
analysis by experiments, by which we also demonstrate tlhiatyasimple ran-
domized heuristic outperforms the greedy heuristics. Eselts for sequential
vector packing highlight the interplay between algorithmalgsis and real-world
problems.

165

166 Chapter 8. Summary of contributions

At the core of the optimization of a hub and spoke railway eysties the
development of a mathematical model that captures enougfheofeal world
problem to be useful and that is at the same time amenable dmputational
approach that can produce solutions in reasonable time. a¥e presented a
sequence of models and discussed their advantages aratibmét. In particular,
the use of LP-based optimization techniques not only presisolutions but also
lower bounds and thus a quality guarantee that is difficufirtvide by simple
meta-heuristics for the problem at hand. The migration feobranch and cut
model to a column generation model has allowed us to incatpaonsiderably
more aspects of the problem without decreasing the sizeedhtitances that we
can solve in a given time. In particular, we were able to \akdur approaches
on real world data of Swiss federal railways SBB Cargo Ltd. 3feceeded in
producing solutions to these instances. The column gearmabdel, that is part
of an ongoing project at the time of writing this thesis, preas to be a useful
tool in the calculation of schedules for companies such & S&rgo.

For the problem of OVSF-code assignment we have shown the BI§é:
rithm, which was proposed and referenced in several teleaamcations pub-
lications to be incorrect both by a concrete counter-exanapid by an NP-
hardness proof which also settled the complexity of the step-offline CA
problem addressed by the DCA algorithm. We also showed lteatechnique
of dynamic programming can be applied to obtain a moderaféilyientn©(")-
algorithm. More importantly, we showed that it is much moatunal to study
the problem in an online setting. In particular, an optimgbathm to the ini-
tial problem formulation, which solves an NP-complete peaiin every step, is
provably no better than @(h)-competitive scheme that we propose. We com-
plemented this result by showing thEh)-competitiveness of other proposed
schemes and sketching a resource augmented algorithm evitamt competi-
tive ratio. A crucial ingredient to the design of useful aigfums for the OVSF
code assignment problem has been the change in perspectivéie “classical”
one step problem to the online problem.

Similar to the OVSF code assignment problem, the joint bigma schedul-
ing problem is inspired by a publication from telecommutimas. It led us to
the arrow graph class, which in turn is connected to tragkegmphs. In these
graph classes polynomial algorithms for chromatic numbeighted indepen-
dent set, cliqgue cover, and weighted clique exist as thepenfect. The perfect-
ness of arrow-graphs helps in the design of an approximalgorithm for the
one-dimensional version of the problem. Unfortunatelgréhs no direct corre-
spondence to this result in two dimensions. Still, for the tlimensional case,
we were able to prove NP-completeness and to give approximatgorithms
in a restricted setting. It should be clear that this appration algorithm is not

167

suitable for the original application. On the other hand; theoretical results
give a different kind of insight into the original problemhé& conceptual idea
of a coordination of base stations on a very short time staeshould help to
boost the performance of the network leads to hard combiaafyoblems that
must be solved very fast. Therefore, one might call into jarghe proposed
procedure and search for specialized algorithms that cerpuote the desired
scheduling in real-time only if it still seems desirable ooy the method from
an applications point of view.

To sum up, the four problems encountered in this thesis shogifierent
ways how practice and theory are connected and can benefitfach other.

Appendix A

Information on Experiments

169

170

Appendix A. Information on Experiments

Table A.1: Characteristics of the computers on which we ran experiment

Machine A B C

CPU type Intel P4 Intel P4, AMD Athlon 64 X2/DC 4400+
CPU clock 3GHz 3GHz 1 GHz

memory 2GB 3GB 4GB

(ON) Linux 2.4.22| Linux 2.4.22 Linux 2.6.13-15.8-smp
CPLEX 9.0 9.0 10.0

OPL 3.7 3.7 -

A.1 Setting for Computational Experiments

Table A.1 gives an overview over the computers that we usettiéoexperiments.

A.2. ILP Formulation 171

A.2 ILP Formulation

We give here the ILP formulation for the most basic model, kldd This for-
mulation models both the routing and the scheduling asfdebieogeneral train
optimization problem (cf. Definition 5.1), but it ignoresthapacity aspect. Itis
written in the OPL language, see [71]. Itis explained in B&ch.4 and evaluated
in Section 5.8.

THErrrrrririrrrt
11 I NPUT 11
FEELEEEEErrrrnry

/'l nunber of trains
int+ nbTrains = ...;

/1 nunmber of vertices
int+ nbVertices = ...;
int+ nbHubs = ...;

/1 big Ms used in Model

int MwD = 30;
int MwA = 36;
int Mlep = 36;
int Mc = 36;

nt + hubDi stance = ...;
int+ aver ageSpeed = .. .;
int+ hubTravel Ti me = hubDi stance / aver ageSpeed;

/1 Ranges

range
bool 0..1,
idTrains [1..nbTrains],
idVertices [0..nbVertices-1],

/1 we experimented with relaxing some of the bool vars to [0..1] vars
/1 if their integrality was inplied by other vars

float oone [0.0..1.0],

float departTines [0..MwD],

float arriveTines [0.. MwA],

float betweenTinmes [0..MwD];

/'l Sets

{int} Trains = {i | i inidTrains};
{int} Vertices = {i | i in idVertices};
{int} Hubs = {i | i in [0..nbHubs-1]};

/'l Further paraneters
// the minimumtinme that a car needs to be processed in the shunting yard

int+ shuntingTime = ...;
int+ hubShuntingTime = .. .;

int+ maxTrai nLength = ... ;
bool doGraphics = ...;

172 Appendix A. Information on Experiments

int+ costPerEngine = ...;
int+ costPerKilonmeter = ...;

struct arc {int i; int j;};
{arc} Arcs = ...
int+ nbArcs = card(Arcs);
int+ length[Arcs] = ...;

int+ times[Arcs];
initialize
forall(a in Arcs) tinmes[a] = | ength[a]/averageSpeed,;

display tines;

struct shiprent {
int index;
int start;
int end;
int vol ume;
depart Ti mes earl i estDeparture;
depart Ti mes | at est Departure;
arriveTinmes earliestArrival;
arriveTines |atestArrival;
b
{shiprent} Shipnments = ...;
di spl ay Shipnents;

int nbShi pnents = 0;
initialize
forall (s in Shipnments) {
s.index = nbShi pnents;
nbShi pnents = nbShi pnent s+1;
b

/1 direct path |engths
int directpathscosts[0.. nbShipnments-1]=...;

TIEELTETErrrnri

11 MODEL 11

TIEEEEErrrrrrrn

// train uses arc on its way to sonme hub
var bool travel sForth[Trains, Arcs];

/1 train uses arc on its way from sone hub
var bool travel sBack[Trains, Arcs];

/'l train goes between two hubs
var bool travel sBetween[Trains, Hubs, Hubs];

/1 train starts at vertex
var bool starts[Trains, Vertices];

/1 train ends at vertex
var bool ends[Trains, Vertices];

/1l time at which a train arrives at a station on its way to sone hub
var departTinmes arrivesForth[Trains, Vertices];

A.2. ILP Formulation 173

/1l time at which a train arrives at a station on its way from some hub
var arriveTinmes arrivesBack[Trains, Vertices];

/1 tinme at which train z starts a hub hub ride
var betweenTi nes startsBetween[Trains];

/1 direct paths from Shipnents
var bool direct[Trains, Shipnents];

/1 train takes shipment and goes to hub
var bool takesForth[Trains, Shipnments, Hubs];

/1 train takes shipnent from hub
var bool takesBack[Trains, Shipnments, Hubs];

/1 train takes shipnment between hubs
var bool takesBetween[Trains, Shipnents, Hubs, Hubs];

/1 second train depends on first for its front/back journey through h
var bool depFB[Trains, Trains, Hubs];

/1 second train depends on first for Hub Hub journey through h
var bool depFH Trains, Trains, Hubs];

/'l second train depends on first for hub back journey through h
var bool depHB[Trains, Trai ns, Hubs];

/'l set branching priorities (we experinented with different settings here)
setting m psearch{
forall (z in Trains, ain Arcs) {
setPriority(travel sForth[z, a],1);
setPriority(travel sBack[z,a],1);

b
I

mnimze sun(z in Trains, h in Hubs, <u,v>in Arcs: v = h)
cost Per Engi ne * travel sForth[z, <u, v>]
+ sum(a in Arcs, z in Trains)
(costPerKiloneter* length[a] *» (travel sBack[z,a] + travel sForth[z,a]))
+ sum(h in Hubs, hp in Hubs, z in Trains)
(travel sBetween[z, h, hp] * hubDi st ance)
+ sum(z in Trains, s in Shipnents)
(directpathscosts[s.index] * direct[z,s])

subject to
{
/1 a shipnment can only be taken by passing trains
forall(z in Trains, h in Hubs, v in Vertices, s in Shipnents: v = s.start)
takesForth[z,s, h] <= sun(<i,v>in Arcs) travel sForth[z, <i,v>]
+ starts[z,v];

forall(z in Trains, h in Hubs, v in Vertices, s in Shipnents: v = s.end)
takesBack[z,s, h] <= sun(<v, i>in Arcs) travel sBack[z, <v, i>]
+ ends[z, Vv];

forall(z in Trains, s in Shipments, h in Hubs, hp in Hubs)
t akesBet ween[z, s, h, hp] <= travel sBetween[z, h, hp];

174 Appendix A. Information on Experiments

/1 each supply is taken back and forth
forall (s in Shipnents)
sum(z in Trains, h in Hubs) takesForth[z, s, h]
+ sum(z in Trains) direct[z,s] >= 1;

forall (s in Shipnents)
sum(z in Trains, h in Hubs) takesBack[z,s, h]
+ sum(z in Trains) direct[z,s] >=1;

/'l any train does at npst one direct path or one trip to the hub
forall(z in Trains) {
sunm(s in Shipnments) direct[z,s]
+ sum(<i,v>in Arcs: v in Hubs) travel sForth[z, <i,v>]=1;
sum(s in Shipnments) direct[z,s]
+ sum(<v,i>in Arcs: v in Hubs) travel sBack[z, <v,i>] =1;

I

/1 inflow outflow trains at nodes
forall(z in Trains, v in Vertices: v not in Hubs)
sum(<i,v>in Arcs) tra velsForth[z,<i,v>] + starts[z,v] =
sum(<v,j> in Arcs) travel sForth[z,<v,j>]
+ sun(s in Shipnents: s.start=v) direct[z,s];

forall(z in Trains, v in Vertices: v not in Hubs)
sum(<i,v> in Arcs) travel sBack[z, <i, v>]
+ sun(s in Shipnments: s.end = v) direct[z,s] =
sun(<v,j> in Arcs) travel sBack[z, <v,j>] + ends[z,v];

/1 inflow outflow trains at hubs
forall(h in Hubs, z in Trains)
sun(<i,h>in Arcs) travel sForth[z, <i, h>]
+ sun(hp in Hubs) travel sBetween[z, hp, h] =
sum(<h,i> in Arcs) travel sBack][z, <h,i>]
+ sum(hp in Hubs) travel sBetween[z, h, hp];

/1 maxi mum Train | ength
forall(z in Trains) {
(sun{h in Hubs, s in Shipnents) s.volume * takesForth[z,s,h])
+ sum(s in Shipnments) s.volune * direct[z,s] <= maxTrainLength;
(sun{h in Hubs, s in Shipnments) s.volunme * takesBack[z,s,h])
+ sum(s in Shipnments) s.volune * direct[z,s] <= maxTrainLength;
sum(h in Hubs, hp in Hubs, s in Shipnents)
s.volunme * takesBetween[z,s, h, hp] <= naxTrainLength};

/1 inflow outflow shipnments at hubs
forall (h in Hubs, s in Shipnents)
sum(z in Trains) takesForth[z,s,h]
+ sun(t in Trains, hp in Hubs: hp<>h)
t akesBet ween[t, s, hp, h] =
sum(z in Trains) takesBack|[z,s, h]
+ sum(t in Trains, hp in Hubs: hp<>h) takesBetween[t,s,h, hp];

/'l couple takesForth (takesBack) w travelsforth (travel sBack) at hubs
forall (h in Hubs, z in Trains, s in Shipnents){
takesForth[z,s, h] <= sum(<u,v> in Arcs: v=h) travel sForth[z, <u,v>];
takesBack[z, s, h] <= sum(<u,v> in Arcs: u=h) travel sBack[z, <u, v>];

A.2. ILP Formulation 175

/'l Capacity at hubs
/1 is not nodeled here!!

/1 tine wi ndows
forall(z in Trains, s in Shipnents)
arrivesForth[z,s.start] + (1- sun{h in Hubs) takesForth[z,s,h]) * MwD
>= s.earliestDeparture;

forall(z in Trains, s in Shipnents)
arrivesForth[z,s.start] - (1-sun(h in Hubs) takesForth[z,s,h]) * MwD
<= s.| atestDeparture;

forall(z in Trains, s in Shipnents)
arrivesBack[z,s.end] + (1- sun(h in Hubs) takesBack[z,s,h]) * MwA
>= s.earliestArrival;

forall(z in Trains, s in Shipnents)
arrivesBack[z,s.end] - (1- sun(h in Hubs) takesBack[z,s,h]) * MwA
<= s.latestArrival;

// trains start and end at npst once
forall(z in Trains)
sum(v in Vertices) starts[z,v] <= 1,

forall(z in Trains)
sum(v in Vertices) ends[z,v] <= 1;

/1 tinme consistency at nodes
/'l pure travel time (not redundant!)
forall(z in Trains, <i,v>in Arcs)
Mc * (1 - travelsForth[z,<i,v>]) + arrivesForth[z,v]
>= arrivesForth[z,i] + tines[<i,v>];

/'l + shunting tine
forall(z in Trains, s in Shipnments, <u,v>in Arcs: u=s.start)
Mc * (1 - travelsForth[z,<u,v>]) + arrivesForth[z,v] >=
arrivesForth[z,u] + tinmes[<u,v>]
+ sum(h in Hubs) (takesForth[z,s,h] * shuntingTine);

/'l pure travel time (not redundant!)
forall(z in Trains, <i,v>in Arcs)
Mc * (1 - travel sBack[z,<i,v>]) + arrivesBack][z, v]
>= arrivesBack[z,i] + tines[<i,v>];

/1 + shunting tine
forall(z in Trains, s in Shipnments, <u,v>in Arcs: u = s.end)
Mc * (1 - travel sBack[z, <u,v>]) + arrivesBack[z,v] >=
arrivesBack[z,u] + tines[<u,v>]
+ sum(h in Hubs) takesBack[z,s,h] * shuntingTine;

/1 tine consistency at hub wt trains
forall(h in Hubs, z in Trains, zp in Trains)
Miep * (1 - depFB[z, zp,h]) + arrivesBack[zp, h]
>= arrivesForth[z, h] + hubShuntingTi ne;

176 Appendix A. Information on Experiments

forall (h in Hubs, z in Trains, zp in Trains)
Mlep * (1 - depFH z,zp, h]) + startsBetween[zp]
>= arrivesForth[z, h] + hubShuntingTi ne;

forall (h in Hubs, z in Trains, zp in Trains)
Mlep * (1 - depHB[z, zp, h]) + arrivesBack[zp, h]
>= startsBetween[z] + hubShuntingTine + hubTravel Ti ne;

/| dependence on engine
forall(z in Trains, h in Hubs)
depFB[z, z, h] >= sun(<i,h>in Arcs) travel sForth[z, <i, h>]
+ sum(<h,i> in Arcs) travel sBack[z, <h,i>] - 1;

forall(z in Trains, h in Hubs)
depFH[z, z, h] >= sun(<i,h>in Arcs) travel sForth[z,<i,h>] +
+ sun(hp in Hubs) travel sBetween[z, h, hp] - 1;

forall(z in Trains, h in Hubs, s in Shipnents)
depHB[z, z, h] >= sun{(<h,i> in Arcs) travel sBack|z, <h,i>]
+ sun(hp in Hubs) travel sBetween[z, hp, h] - 1;

/1 couple dep and takesforth / back
forall(z in Trains, zp in Trains, s in Shipnents, h in Hubs) {
depFB[z, zp, h] >= takesForth[z,s, h] + takesBack[zp,s,h] - 1;
depFH z, zp, h] >= takesForth[z,s, h]
+ sunm(hp in Hubs) takesBetween[zp,s,h,hp] - 1;
depHB[z, zp, h] >= sun(hp in Hubs) takesBetween[z,s, hp,h]
+ takesBack[zp, s, h] - 1};

/1 symmetry breaking constraints
forall(z in Trains, zp in Trains: z < zp)
sum(v in Vertices) starts[z,v] >= sum(v in Vertices) starts[zp,Vv];

forall (v in Vertices, z in Trains, zp in Trains: z < zp)
sum(vp in Vertices: vp <= v) starts[z, vp]
>= sum(vp in Vertices: vp <= v) starts[zp,vp];
/1 basic initializations

forall(h in Hubs, z in Trains)
travel sBetween[z, h, h] = 0;

/1 sone valid inequalities

forall(z in Trains)

sum(h in Hubs, hp in Hubs) travel sBetween[z, h, hp] <= 1;
forall(z in Trains, s in Shipnents)

sum(h in Hubs, hp in Hubs: h<>hp) takesBetween[z,s,h, hp] <= 1;
forall(z in Trains, zp in Trains){

sun(h in Hubs) depFB[z, zp,h] <= 1;

sunm(h in Hubs) depFH z, zp, h] <= 1,

sum(h in Hubs) depHB[z, zp, h] <=1;
}

}
.

A.2. ILP Formulation

177

in Shipnments: direct[z,s]>0) direct[z,s];

in Arcs: travel sForth[z,a]>0) travel sForth[z, a];

in Arcs: travel sBack[z, a] >0) travel sBack[z, a];

in Vertices: arrivesForth[z,v]>0) arrivesForth[z,v];
in Vertices: arrivesBack[z,v]>0) arrivesBack[z, v];

st art sBet ween[z] >0) startsBetween[z];

in Shipnents, h in Hubs: takesForth[z,s, h]>0)

takesForth[z,s, h];

in Shipnments, h in Hubs: takesBack[z,s, h]> 0)

s in Shipnents, h in Hubs, hp in Hubs:
t akesBet ween[z, s, h, hp] >0) t akesBetween|[z, s, h, hp];

zp in Trains, h in Hubs: depFB[z, zp, h
zp in Trains, h in Hubs: depFH z, zp, h
zp in Trains, h in Hubs: depHB[z, zp, h

>0) depFB[z, zp, h];
>0) depFH z, zp, h];
>0) depHB[z, zp, h];
z, h, hp] >0)

in Hubs, hp in Hubs: travel sBetween

travel sBetween[z, h, hp] ;

in Vertices: starts[z,v]>0) starts[z,v];

Il QuTPUT //
TEEEETErrrrrrrn
display(z in Trains, s
display(z in Trains, a
display(z in Trains, a
display(z in Trains, v
display(z in Trains, v
display(z in Trains:
display(z in Trains, s
display(z in Trains, s
takesBack[z, s, h] ;

display (z in Trains,
display(z in Trains,
display(z in Trains,
display(z in Trains,
display(z in Trains, h
display(z in Trains, v
display(z in Trains, v

in Vertices: ends[z,v]>0) ends[z,vV];

178 Appendix A. Information on Experiments

Bibliography

(1]

(2]

(3]

(4]

(5]
(6]

[7]

(8]

9]

Karen Aardal and Stan van Hoesel. Polyhedral techniquesmbinato-
rial optimization II: Computations. report UU-CS-1995;4%recht Uni-
versity, 1995.

Karen Aardal and Stan van Hoesel. Polyhedral techniquesmbinator-
ial optimization I: Theory.Statistica Neerlandiceb0:3—-26, 1996.

Tobias Achterberg. SCIP - a framework to integrate ciist
and mixed integer programming. Technical Report 04-19, eZus
Institute Berlin, 2004. http://wwv. zi b. de/ Publ i cati ons/
abstract s/ ZR- 04- 19/ .

Fumiyuki Adachi, Mamoru Sawahashi, and Koichi Okawa.edstruc-
tured generation of orthogonal spreading codes with diffefength for
forward link of DS-CDMA mobile radio. Electronic Letters 33(1):27—
28, January 1997.

Juri Adamek.Foundation of CodingWiley, 1991.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orletwork
Flows Prentice Hall, 1993.

Susanne AlbersCompetitive Online AlgorithmsBRICS Lecture Series,
September 1996.

Rujipun Assarut, Milda G. Husada, Ushio Yamamoto, andhfkuni

Onozato. Data rate improvement with dynamic reassignnfepreading
codes for DS-CDMA. Computer Communication®5(17):1575-1583,
2002.

Rujipun Assarut, Kenichi Kawanishi, Rajkumar Deshpantdshio Ya-
mamoto, and Yoshikuni Onozato. Performance evaluatiorrtbbgonal

179

180

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

variable-spreading-factor code assignment schemes ibWAC In ICC
2002 conferencevolume 5, pages 3050-3054, 2002.

Philippe Augerat, José M. Belenguer, Enrique Bengwvengel Corbéran,
and Denis Naddef. Separating capacity constraints in thRREsing
tabu search. European Journal of Operations Resegrd©6:546-557,
1998.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio GandpViggo Kann, Al-
berto Marchetti-Spaccamela, and Marco Prot@simplexity and Approx-
imation Springer, 1991.

Masri Ayob, Peter Cowling, and Graham Kendall. Optiatisn of sur-
face mount placement machines. Proceedings of IEEE International
Conference on Industrial Technolggyages 486—491, 2002.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauistartin W. P.
Savelsbergh, and Pamela H. Vance. Branch-and-price: God@meration
for solving huge integer program@perations Researcd6(3):316—-329,
1998.

Robert G. Bland. New finite pivoting rules for the simplaethod.Math-
ematics of Operations Resear¢h103-107, 1977.

Ulrich Blasum, Michael R. Bussieck, Winfried Hochstér, Christoph
Moll, Hans-Helmut Scheel, and Thomas Winter. Scheduliag in the
morning.Mathematical Methods of Operations Researt®(1):137-148,
1999.

Ulrich Blasum and Winfried Hochstattler. Applicati@f the branch and
cut method to the vehicle routing problem. Technical Repor2000-386,
Zentrum fur angewandte Informatik, Koln, 2000.

Natashia Boland, John Detheridge, and Irina Dumiueséccelerated
label setting algorithms for the elementary resource caimstd shortest
path problem. electronically available, 2005.

Allan Borodin and Ran El-YanivOnline Computation and Competitive
Analysis Cambridge University Press, 1998.

Julien Bramel and David Simchi-Levi.The Vehicle Routing Problem
chapter Set-Covering Algorithms for the Capacitated VRRMSMono-
graphs on Discrete Mathematics and Applications. SIAM, 200

Bibliography 181

[20] Andreas Brandstadt, Van Bang Le, and Jeremy P. SpifBaaph classes:
A survey SIAM Monographs on Discrete Mathematics and Applications
Society for Industrial and Applied Mathematics, Philadedp PA, 1999.

[21] Alberto Caprara and Matteo Fischetfinnotated Bibliographies in Com-
binatorial Optimization chapter Branch-and-Cut Algorithms, pages 45—
64. Discrete Mathematics and Optimization. Wiley, 1997.

[22] Hasan Cam. Nonblocking OVSF codes and enhancing mkteapacity
for 3G wireless and beyond systemstrenational Conference on Third
Generation Wireless and Beyaommhges 148-153, Mai 2002.

[23] Alberto Ceselli and Giovanni Righini. A branch and prialgorithm for
the capacitated p-median problehetworks 45(3):125-142, 2005.

[24] Wen-Tsuen Chen and Shih-Hsien Fang. An efficient chigzaten code
assignment approach for W-CDMAEEE Conference on Wireless LANs
and Home Network2002.

[25] Wen-Tsuen Chen, Ya-Ping Wu, and Hung-Chang Hsiao. Aehowde
assignment scheme for W-CDMA systensoc. of the 54th IEEE Vehic-
ular Technology Society Conferen@1182-1186, 2001.

[26] Ying-Chung Chen and Wen-Shyen E. Chen. Implementatfoan effi-
cient channelization code assignment algorithm in 3G WCDN®03.

[27] Nicos Christofides, Aristide Mingozzi, and Paolo Toffxact algorithms
for vehicle routing Mathematical Programming@0:255—-282, 1981.

[28] Julia Chuzhoy and Joseph Naor. New hardness resultefmyestion min-
imization and machine scheduling. Rroceedings of the 36th Annual
ACM Symposium on the Theory of Computing (STOC'pdyes 28-34,
2004.

[29] VaSek ChvatalLinear Programming Freeman, 1980.

[30] Mark Cielibak, Thomas Erlebach, Fabian Hennecke, iBad/\Veber, and
Peter Widmayer. Scheduling jobs on a minimum number of nmeshi
In Proceedings of the 3rd IFIP International Conference on drkécal
Computer Scien¢g@ages 217-230. Kluwer, 2004.

[31] G. Clarke and J. W. Wright. Scheduling of vehicles froroeatral depot
to a number of delivery point©perations Resear¢ci2:568-581, 1964.

182 Bibliography

[32] Edward G. Coffman Jr., Michael R. Garey, and David S.n3aim. Al-
gorithm Design for Computer System Desighapter Approximation Al-
gorithms for Bin Packing: An updated Survey, pages 49-1Q&in§er,
1984.

[33] Edward G. Coffman Jr., Michael R. Garey, and David Sn¥uim.Approx-
imation Algorithmschapter Approximation Algorithms For Bin Packing:
A Survey, pages 46—93. PWS Publishing Company, 1997.

[34] Stephen A. Cook. The complexity of theorem-provinggadures.Pro-
ceedings of the 3rd Annual ACM Symposium on the Theory of Qtimgp
(STOC'71) pages 151-158, 1971.

[35] William J. Cook, William H. Cunningham, William R. Payblank, and
Alexander SchrijverCombinatorial OptimizationDiscrete Mathematics
and Optimization. Wiley, 1998.

[36] Don Coppersmith and Prabhakar Raghavan. Multidineyaion-line bin
packing: Algorithms and worst-case analyst3perations Research Let-
ters 4:48-57, 1989.

[37] Jean-Francois Cordeau, Guy Desaulniers, Jacquas$ieis, Marius M.
Solomon, and Francgois Soumighe Vehicle Routing Problenchapter
VRP with Time Windows. SIAM Monographs on Discrete Matheicgt
and Applications. SIAM, 2002.

[38] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Riaesl Clifford
Stein. Introduction to AlgorithmsMIT Press, 2nd edition, 2001.

[39] Elias Dahlhaus, Peter Horak, Mirka Miller, and JosdphlRyan. The
train marshalling problemDiscrete Applied Mathematic403(1-3):41—
54, 2000.

[40] Elias Dahlhaus, Fredrik Manne, Mirka Miller, and Jolsdp Ryan. Al-
gorithms for combinatorial problems related to train matkhg. In Pro-
ceedings of AWOCA 2000, In Hunter Vallppges 7—16, July 2000.

[41] Emilie Danna and Claude Le Pap@olumn Generationchapter Branch-
and-Price Heuristics: A case study on the vehicle routiraplam with
time windows, pages 99-129. Springer-Verlag, 2005.

[42] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, R&@iinan, Jon M.
Kleinberg, Christos H. Papadimitriou, Prabhakar Raghaeard Uwe
Schoning. A deterministic (2-2/(k+1))n algorithm for ktsased on local
search.Theoretical Computer Scienc239(1):69-83, 2002.

Bibliography 183

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Suman Das, Harish Viswanathan, and Gee Rittenhousenamic load
balancing through coordinated scheduling in packet dattesys. InPro-
ceedings of Infocom’Q2003.

Guy Desaulniers, Jacques Desrosiers, Arielle Lasnd Marius M.
Solomon. Computer-Aided Transit Schedulinchapter Crew Pairing for
a Regional Carrier, pages 19-41. Lecture Notes in Econcanid$/lethe-
matical Systems. Springer-Verlag, 1999.

Guy Desaulniers, Jacques Desrosiers, and Marius Manamh. Essays
and Surveys in Metaheuristicshapter Accelerating strategies in column
generation methods for vehicle routing and crew schedyliraplems,
pages 309-324. Kluwer, 2001.

Guy Desaulniers, Jacques Desrosiers, and Marius Monsah, editors.
Column GenerationSpringer-Verlag, 2005.

Russel G. Downey and Michael R. Fellow®arametrized Complexity
Monographs in Computer Science. Springer-Verlag, 1999.

James R. Driscoll, Neil Sarnak, Daniel D. K. Sleatod &obert E. Tarjan.
Making data structures persistent. STOC '86: Proceedings of the eigh-
teenth annual ACM symposium on Theory of compufages 109-121,
New York, NY, USA, 1986. ACM Press.

Thomas Erlebach, Riko Jacob, Mat(3 Mitka Marc Nunkesser, Gabor
Szabd, and Peter Widmayer. An algorithmic view on OVSF casle
signment. TIK-Report 173, Computer Engineering and Nekadrab-
oratory (TIK), ETH Zurich, August 2003. Available elechically at
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Repbr3.pdf.

Thomas Erlebach, Riko Jacob, Mat($ Mitka Marc Nunkesser, Gabor
Szabb, and Peter Widmayer. An algorithmic view on OVSF casisgn-
ment. in Proc. of the 21st Annual Symposium on Theoretical AspEcts
Computer Scienc&NCS 2996:270-281, 2004.

Thomas Erlebach, Riko Jacob, Mat($ Mitka Marc Nunkesser, Gabor
Szab0, and Peter Widmayer. Joint Base Station SchedulinBroc. of
the 2nd International Workshop on Approximation and Onftgorithms
LNCS 3351:225-238, 2004.

Thomas Erlebach, Riko Jacob, Mat($ Mitka Marc Nunkesser, Gabor
Szabd, and Peter Widmayer. Joint base station schedullieghnical
Report 461, ETH Zurich Institute of Theoretical Computeie@ce, 2004.

184 Bibliography

[53] Thomas Erlebach, Riko Jacob, Mat(% Méka Marc Nunkesser, Gabor
Szabb, and Peter Widmayer. An algorithmic view on OVSF casisgn-
ment. Algorithmica 2006. to appear.

[54] Thomas Erlebach and Frits C.R. Spieksma. Intervaksiele: Applica-
tions, algorithms, and lower bound&lgorithmica 46:27-53, 2001.

[55] Romano Fantacci and Saverio Nannicini. Multiple asga®tocol for in-
tegration of variable bit rate multimedia traffic in UMTS/MY2000 based
on wideband CDMA. IEEE Journal on Selected Areas in Communica-
tions 18(8):1441-1454, August 2000.

[56] Uriel Feige, David Peleg, and Guy Kortsarz. The denseibgraph prob-
lem. Algorithmica 29(3):410-421, 2001.

[57] Dominique Feillet, Pierre Dejax, Michel Gendreau, &dille Gueguen.
An exact algorithm for the elementary shortest path probiéimresource
constraints: Application to some vehicle routing problemisetworks
44(3):216—-229, 2004.

[58] Stefan Felsner, R. Miller, and L. Wernisch. Trapezp@phs and general-
izations, geometry and algorithmBiscrete Applied Mathematicg4:13—
32,1997.

[59] Amos Fiat and Gerhard J. Woeging€nline Algorithms Lecture Notes
in Computer Science. Springer-Verlag, 1998.

[60] Carl E. Fossa Jr.Dynamic Code Sharing Algorithms for IP Quality of
Service in Wideband CDMA 3G Wireless NetworR&D thesis, Virginia
Polytechnic Institute and State University, April 2002.

[61] Carl E. Fossa Jr. and Nathaniel J. Davis IV. Dynamic cassignment
improves channel utilization for bursty traffic in 3G wiretenetworks.
IEEE International Communications Conferen202.

[62] Michael R. Garey and David S. Johnso@omputers and Intractability
Freeman, 1979.

[63] Michael Gatto, Riko Jacob, and Marc Nunkesser. Optatidan of a rail-
way hub-and-spoke system: Routing and shunting. In loah&Zigian-
nakis and Sotiris Nikoletseas, editoRpster Proceceedings of the 4th
International Workshop on Efficient and Experimental Algons (WEA
05), pages 15—-26. CTI-Press, 2005.

Bibliography 185

[64] Ralph E. Gomory. Outline of an algorithm for integerwins to linear
programs. Bulletin of the American Mathematical Socie64:275-278,
1958.

[65] Ralph E. Gomory.Combinatorial Analysischapter Solving linear pro-
gramming problems in integers, pages 211-215. Proceedii@ysnposia
in Applied Mathematics X. American Mathematical Socie§60Q.

[66] Albert Graf, Martin Stumpf, and Gerhard Weil3enfelsn €bloring unit
disk graphsAlgorithmica 20(3):277-293, March 1998.

[67] Martin Grotschel, Laszlo Lovasz, and Alexander §gkr. The ellipsoid
method and its consequences in combinatorial optimiza@mmbinator-
ica, 1:169-197, 1981.

[68] Martin Grotschel, Laszlo Lovasz, and Alexander §gkr. Geometric Al-
gorithms and Combinatorial Optimizatioispringer-Verlag, Berlin, 1988.

[69] Alexander Hall, Steffen Hippler, and Martin SkutellaMulticommod-
ity flows over time: Efficient algorithms and complexity. Rroceed-
ings of the 30th International Colloquium on Automata, Laages, and
Programming (ICALP’03)LNCS 2719, pages 397-409. Springer-Verlag,
June 2003.

[70] Randolph Hall. On the road to recoveR/MS TodayJune 2004. avail-
able atwww. | i onhrt pub. conf or s/ or ms- 6- 04/ f r sur vey.
ht .

[71] Pascal Van HentenryckThe OPL optimization programming language
MIT Press, 1999.

[72] Wolfgang Hiller. Rangierbahnbfe Transpress VEB Verlag fur Verkehr-
swesen, 1983.

[73] Dorit S. Hochbaum, editorApproximation AlgorithmsPWS Publishing
Company, 1997.

[74] Harri Holma and Antti ToskalaWCDMA for UMTS Wiley, 2001.

[75] Brian Kallehauge, Jesper Larsen, Oli B. G. Madsen, aratidg M.
Solomon. Column Generationchapter Vehicle Routing Problem with
Time Windows, pages 67-98. Springer-Verlag, 2005.

[76] Bala Kalyanasundaram and Kirk Pruhs. Speed is as poWwasf clair-
voyance. Proceedings of the 36th IEEE Symposium on Foundations of
Computer Sciengpages 214-221, 1995.

186 Bibliography

[77] Bala Kalyanasundaram and Kirk Pruhs. Speed is as pohesfclairvoy-
ance.Journal of the ACM47(4):617-643, 2000.

[78] Anthony C. Kam, Thit Minn, and Kai-Yeung Siu. Suppogirate guaran-
tee and fair access for bursty data traffic in W-CDMKEEE Journal on
Selected Areas in Communicatiof8(11):2121-2130, November 2001.

[79] Leonid G. Khachiyan. A polynomial algorithm in linearqgramming.
Doklady Akademii Nauk SSSRI4:1093-1096, 1979.

[80] Jon M. Kleinberg andva Tardos.Algorithm Design Addison Wesley,
2006.

[81] Bernhard Korte and Jens Vyge@ombinatorial Optimization Springer-
Verlag, 3rd edition, 2006.

[82] Laszlo Ladanyi, Ted R. Ralphs, and Leslie E. Trott&€omputational
Combinatorial Optimizationchapter Branch, Cut, and Price: Sequential
and Parallel. Springer-Verlag, 2001.

[83] Jaana Laiho, Achim Wacker, and Tomas Novosgddio Network Plan-
ning and Optimisation for UMT.SNiley, New York, 2002.

[84] Gilbert Laporte. Annotated Bibliographies in Combinatorial Optimiza-
tion, chapter Vehicle Routing, pages 223—-240. Discrete Mathieswand
Optimization. Wiley, 1997.

[85] Gilbert Laporte, Martin Desrochers, and Yves NobertvoTexact algo-
rithms for the distance-constrained vehicle routing peabl Networks
14:161-172,1984.

[86] Gilbert Laporte, Yves Nobert, and Martin Desrocherspti®al routing
under capacity and distance restrictio@perations Researct33:1050—
1073, 1985.

[87] Eugene E. Lawler, Jan Karel Lenstra, Alexander H. GnRoy Kan, and
David B. ShmoysThe Travelling Salesman ProbleWiley, 1985.

[88] Marco E. Lubbecke and Uwe T. Zimmermann. Shunting mai rail
car allocation.Computational Optimization and Applicatigril (3):295—
308, 2005.

[89] Ramon M. Lentink. Algorithmic Decision Support for Shunt Planning
PhD thesis, Erasmus Research Institute of Management (ERDA6.

Bibliography 187

[90] Fillia S. Makedon, Christos H. Papadimitriou, and IManSudborough.
Topological bandwidth.SIAM Journal on Algebraic and Discrete Meth-
ods 6(3):418-444, July 1985.

[91] Richard Kipp Martin. Large Scale Linear and Integer Optimization
Kluwer, 1999.

[92] Kurt Mehlhorn and Stefan Nahel.EDA a Platform for Combinatorial
and Geometric ComputingCambridge University Press, 1999.

[93] Thit Minn and Kai-Yeung Siu. Dynamic assignment of arjonal
variable-spreading-factor codes in W-CDMAEEE Journal on selected
areas in communication48(8):1429-1440, 2000.

[94] Burkhard Monien and Ivan H. Sudborough. Min cut is NRvete for
edge weighted treesTheoretical Computer Sciencg8(1-3):209-229,
1988.

[95] Matthias Muller-Hannemann and Karsten Weihe. Movipglicies
in cyclic assembly—line scheduling. Theoretical Computer Science
351:425-436, 2006.

[96] Denis Naddef and Giovanni Rinaldlhe Vehicle Routing Problemhap-
ter Branch-and-Cut Algorithms for the Capacitated VRP. gIMono-
graphs on Discrete Mathematics and Applications. SIAM,200

[97] George L. Nemhauser and Laurence A. Woldateger and Combinator-
ial Optimization Discrete Mathematics and Optimization. Wiley, 1988.

[98] Rolf NiedermeierlInvitation to Fixed-Parameter Algorithm®xford Uni-
versity Press, 2006.

[99] Albert Nijenhuis and Herbert WilfCombinatorial Algorithms Academic
Press, 2nd edition, 1978.

[100] Christos H. PapadimitriouComputational ComplexityAddison Wesley,
1994.

[101] Cynthia Phillips, Cliff Stein, Eric Torng, and Joel e Optimal time-
critical scheduling via resource augmentationPhceedings of the 29th
Annual ACM Symposium on Theory of Computing (ST@&yes 140—
149, 1997.

[102] David Pisinger. A minimal algorithm for the 0-1 knapkgroblem.Op-
erations Research5:758-767, 1997.

188 Bibliography

[103] Gerhart Potthoff. Verkehrsstdtmungslehre, Betriebstechnik des Rang-
ierens volume 2. Transpress VEB Verlag fur Verkehrswesen, 1977.

[104] Ted R. Ralphs. Branch and cutaw. br anchandcut . or g.

[105] Ted R. Ralphs. Branch and cut referendast p: / / br anchandcut .
org/ reference. ht m#i npl enent ati ons.

[106] Ted R. Ralphs. Symphony 5.0. ww. br anchandcut . or g/
SYMPHONY.

[107] Ted R. Ralphs, Leonid Kopman, William R. Pulleybla@d Leslie E.
Trotter. On the capacitated vehicle routing problevathematical Pro-
gramming 94(2-3):343-359, 2003.

[108] Venkatesh Raman, Saket Saurabh, and C. R. Subramaréster fixed
parameter tractable algorithms for undirected feedbadiexset.ISAAG
pages 241-248, 2002.

[109] Angelos N. Rouskas and Dimitrios N. Skoutas. OVSF saatsignment
and reassignment at the forward link of W-CDMA 3G systeR$MRC
2002 2002.

[110] Louis M. Rousseau, Michel Gendreau, and Dominiqudldtei Interior
point stabilization for column generation. Technical rep&entre de
recherche sur les transports, 2003.

[111] Frank Ruskey. Combinatorial generation. 2005.

[112] SBB. Cargo express. www. sbbcar go. cont en/ i ndex/ ang__
pr odukt e/ ang_produkt e_express. htm

[113] Armin Scholl. Balancing and Sequencing of Assembly Lin@hysica-
Verlag, Heidelberg, 2nd edition, 1999.

[114] Uwe Schoning. A probabilistic algorithm fdr-SAT based on limited
local search and restar\lgorithmicag 32:615-623, 2002.

[115] Alexander Schrijver.Theory of Linear and Integer Programmindis-
crete Mathematics and Optimization. Wiley, 1986.

[116] David B. ShmoysApproximation Algorithmschapter Cut Problems and
Their Application to Divide-and-Conquer, pages 192—-238/3Publish-
ing Company, 1997.

Bibliography 189

[117] Francois SoumisAnnotated Bibliographies in Combinatorial Optimiza-
tion, chapter Decomposition and Column Generation, pages PE-1
Discrete Mathematics and Optimization. Wiley, 1997.

[118] Frits C.R. Spieksma. On the approximability of an & scheduling
problem.Journal of Scheduling2:215-227, 1999.

[119] Jeremy P. Spinradefficient Graph Representationgolume 19 ofField
Institute MonographsAMS, 2003.

[120] Gabor Szabb.Optimization Problems in Mobile CommunicatiorNo.
16207, ETH Zurich, 2005.

[121] Marco Tomamichel. Algorithmische Aspekte von OVSFdEdAssign-
ment mit Schwerpunkt auf Offline Code Assignmnent. Semekbier
sis, Computer Engineering and Networks Laboratory (TIK)HEZUrich,
2004.

[122] Paolo Toth and Daniele VigoaThe Vehicle Routing Problenshapter An
overview of vehicle routing problems. SIAM Monographs ors@ete
Mathematics and Applications. SIAM, 2002.

[123] Paolo Toth and Daniele Vigo.The Vehicle Routing Problenthapter
Branch-and-Bound Algorithms for the Capacitated VRP. SIAMdno-
graphs on Discrete Mathematics and Applications. SIAM,200

[124] Paolo Toth and Daniele Vigo.The Vehicle Routing Problem SIAM
Monographs on Discrete Mathematics and Applications. S|2802.

[125] Wouter M. C. van Wezel and Jan Riezebos. Algorithmigpsrt for hu-
man rail shunting planners. Proceedings of the 18th International Con-
ference on Production Researchuly 2005.

[126] Francois VanderbeckDecomposition and Column Generation for Inte-
ger Programs PhD thesis, Université Catholique de Louvain, September
1994.

[127] Robert J. VanderbeiLinear Programming, Foundations and Extensions
Kluwer, 2nd edition, 2001.

[128] Vijay V. Vazirani. Approximation AlgorithmsSpringer-Verlag, 2001.

[129] T. S. Wee and M. J. Magazine. Assembly line balancingergeralized
bin-packing.Operations Research Letteis56-58, 1982.

190 Bibliography

[130] Ingo WegenerComplexity Theory. Exploring the Limits of Efficient Algo-
rithms Springer-Verlag, 2005.

[131] Emo Welzl. Boolean satisfiability—combinatorics aaldorithms. un-
published lecture notes, 2005.

[132] Douglas B. WestlIntroduction to Graph TheoryPrentice Hall, 2nd edi-
tion, 2001.

[133] Laurence A. Wolsey.Integer Programming Discrete Mathematics and
Optimization. Wiley, 1998.

[134] Jian Yang and Joseph Y.-T. Leung. The ordered openbangacking
problem.Operations Resear¢h1(5):759-770, 2003.

Curriculum Vitae

Marc Nunkesser
born on May 29, 1976 in Dortmund, Germany

2002 — 2006 PhD Student at ETH Zurich
1998-2002 Diploma in Computer Science
University of Dortmund, Germany
1997 — 1998 Study of Computer Science
Institut National des Sciences Appliquées de Lyon, France
1995 —-1997 Intermediate Diploma
University of Dortmund, Germany
1986 — 1995 Abitur at Goethe Gymnasium
Dortmund, Germany

